Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Growth Enhancement and Nitrogen Loss in ZnOxNy Low-Temperature Atomic Layer Deposition with NH3

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Soo Hyun-
dc.contributor.authorPyeon, Jung Joon-
dc.contributor.authorLee, Woo Chul-
dc.contributor.authorJeong, Doo Seok-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2022-07-15T20:40:50Z-
dc.date.available2022-07-15T20:40:50Z-
dc.date.created2021-05-13-
dc.date.issued2015-10-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/156130-
dc.description.abstractThe growth behavior and properties of ZnOxNy (ZnON) films grown by atomic layer deposition (ALD) with diethylzinc (DEZ), H2O, and NH3 were investigated. Although no growth of a ZnNx film occurs at 150 degrees C from DEZ and NH3, the ZnON film thickness is increasingly saturated by increasing ZnNx subcycles in a supercyde up to three successive ZnNx subcydes. The adsorbed NH3 during the injection step of NH3 induces the chemisorption of DEZ on the surface, consequently resulting in the growth enhancement. The optical band gap of the films decreases from 3.25 to 3.0 eV with increasing ZnNx subcycles. The resistivity of the films is tuned in the range from 4 x 10(-2) to 1 X 10251 cm by the variation of the ZnNx subcydes. However, the nitrogen concentration in the films is limited to approximately 2 at. % even at very high ZnNx cycles. The low nitrogen concentration is attributed to the exchange reaction of NH3 on the ZnON surface with H2O injected during the following step. These intriguing phenomena are not observed in the ALD of Al2OxNy with trimethylaluminum, which has a similar ligand structure as DEZ, H2O, and NH3. This finding demonstrates that the catalytic effect of NH3 adsorbed on the ZnO surface is critical for the growth enhancement in the ALD of ZnON.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleGrowth Enhancement and Nitrogen Loss in ZnOxNy Low-Temperature Atomic Layer Deposition with NH3-
dc.typeArticle-
dc.contributor.affiliatedAuthorJeong, Doo Seok-
dc.identifier.doi10.1021/acs.jpcc.5b06488-
dc.identifier.scopusid2-s2.0-84944413755-
dc.identifier.wosid000363068400022-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICAL CHEMISTRY C, v.119, no.41, pp.23470 - 23477-
dc.relation.isPartOfJOURNAL OF PHYSICAL CHEMISTRY C-
dc.citation.titleJOURNAL OF PHYSICAL CHEMISTRY C-
dc.citation.volume119-
dc.citation.number41-
dc.citation.startPage23470-
dc.citation.endPage23477-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusTIN THIN-FILMS-
dc.subject.keywordPlusSURFACE-CHEMISTRY-
dc.subject.keywordPlusEPITAXY GROWTH-
dc.subject.keywordPlusHIGH-MOBILITY-
dc.subject.keywordPlusAMMONIA-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusSILICA-
dc.subject.keywordPlusTICL4-
dc.subject.keywordPlusSIO2-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b06488-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Doo Seok photo

Jeong, Doo Seok
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE