Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

Full metadata record
DC Field Value Language
dc.contributor.authorJi, Jun Ho-
dc.contributor.authorKim, Jong Bum-
dc.contributor.authorLee, Gwangjae-
dc.contributor.authorNoh, Jung-Hun-
dc.contributor.authorYook, Se-Jin-
dc.contributor.authorCho, So-Hye-
dc.contributor.authorBae, Gwi-Nam-
dc.date.accessioned2022-07-15T22:28:56Z-
dc.date.available2022-07-15T22:28:56Z-
dc.date.created2021-05-12-
dc.date.issued2015-06-
dc.identifier.issn2314-6133-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/157048-
dc.description.abstractMany researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD).-
dc.language영어-
dc.language.isoen-
dc.publisherHINDAWI LTD-
dc.titleWorkplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System-
dc.typeArticle-
dc.contributor.affiliatedAuthorYook, Se-Jin-
dc.identifier.doi10.1155/2015/524283-
dc.identifier.scopusid2-s2.0-84935019901-
dc.identifier.wosid000356269000001-
dc.identifier.bibliographicCitationBIOMED RESEARCH INTERNATIONAL, v.2015, pp.1 - 10-
dc.relation.isPartOfBIOMED RESEARCH INTERNATIONAL-
dc.citation.titleBIOMED RESEARCH INTERNATIONAL-
dc.citation.volume2015-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusTIO2-
dc.subject.keywordPlusFINE-
dc.identifier.urlhttps://www.hindawi.com/journals/bmri/2015/524283/-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yook, Se Jin photo

Yook, Se Jin
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE