Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tunable Bandgap Narrowing Induced by Controlled Molecular Thickness in 2D Mica Nanosheets

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Sang Sub-
dc.contributor.authorVan Khai, Tran-
dc.contributor.authorKulish, Vadym-
dc.contributor.authorKim, Yoon-Hyun-
dc.contributor.authorNa, Han Gil-
dc.contributor.authorkatoch, Akash-
dc.contributor.authorOsada, Minoru-
dc.contributor.authorWu, Ping-
dc.contributor.authorKim, Hyoun Woo-
dc.date.accessioned2022-07-15T22:43:30Z-
dc.date.available2022-07-15T22:43:30Z-
dc.date.created2021-05-12-
dc.date.issued2015-06-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/157136-
dc.description.abstractBandgap engineering of atomically thin 2D crystals is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here, we report a simple but rather unexpected approach for bandgap engineering of muscovite-type mica nanosheets (KAl3Si3O10(OH)(2)) via controlled molecular thickness. Through density functional calculations, we analyze electronic structures in 2D mica nanosheets and develop a general picture for tunable bandgap narrowing induced by controlled molecular thickness. From conducting atomic force microscopy, we observe an abnormal bandgap narrowing in 2D mica nanosheets, contrary to well-known quantum size effects. In mica nanosheets, decreasing the number of layers results in reduced bandgap energy from 7 to 2.5 eV, and the bilayer case exhibits a semiconducting nature with similar to 2.5 eV. Structural modeling by transmission electron microscopy and density functional calculations reveal that this bandgap narrowing can be defined as a consequence of lattice relaxations as well as surface doping effects. These bandgap engineered 2D mica nanosheets open up an exciting opportunity for new physical properties in 2D materials and may find diverse applications in 2D electronic/optoelectronic devices.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleTunable Bandgap Narrowing Induced by Controlled Molecular Thickness in 2D Mica Nanosheets-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Hyoun Woo-
dc.identifier.doi10.1021/cm504802j-
dc.identifier.scopusid2-s2.0-84935023298-
dc.identifier.wosid000356989100009-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.27, no.12, pp.4222 - 4228-
dc.relation.isPartOfCHEMISTRY OF MATERIALS-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume27-
dc.citation.number12-
dc.citation.startPage4222-
dc.citation.endPage4228-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusQUANTUM-
dc.subject.keywordPlusLUMINESCENCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusFILMS-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/cm504802j-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyoun Woo photo

Kim, Hyoun Woo
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE