Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Unified Analysis with Mixed Finite Element Formulation for Acoustic-Porous-Structure Multiphysics System

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Gil Ho-
dc.date.accessioned2022-07-15T23:58:24Z-
dc.date.available2022-07-15T23:58:24Z-
dc.date.created2021-05-12-
dc.date.issued2015-03-
dc.identifier.issn0218-396X-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/157769-
dc.description.abstractThis research aims to develop a novel unified analysis method for an acoustic-porous-structure multiphysics interaction system when the porous medium is modeled by the empirical Delany-Bazley formulation. Multiphysics analysis of acoustic structure interaction is commonly performed by solving the linear elasticity and Helmholtz equations separately and enforcing a mutual coupling boundary condition. If the pressure attenuation from a porous material is additionally considered, the multiphysics analysis becomes highly intricate, because three different media (acoustic, porous, and elastic structures) with different governing equations and interaction boundary conditions should be properly formulated. To overcome this difficulty, this paper proposes the application of a novel mixed formulation to consider the mutual coupling effects among the acoustic, fibrous (porous), and elastic structure media. By combining the mixed finite element formulation with the Delany-Bazley formulation, a multiphysics simulation of sound propagation considering the coupling effects among the three media can be easily conducted. To show the validity of the present unified approach, several benchmark problems are considered.-
dc.language영어-
dc.language.isoen-
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD-
dc.titleUnified Analysis with Mixed Finite Element Formulation for Acoustic-Porous-Structure Multiphysics System-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Gil Ho-
dc.identifier.doi10.1142/S0218396X15500022-
dc.identifier.scopusid2-s2.0-84928408777-
dc.identifier.wosid000349848700004-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL ACOUSTICS, v.23, no.1-
dc.relation.isPartOfJOURNAL OF COMPUTATIONAL ACOUSTICS-
dc.citation.titleJOURNAL OF COMPUTATIONAL ACOUSTICS-
dc.citation.volume23-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAcoustics-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryAcoustics-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.subject.keywordPlusTOPOLOGY OPTIMIZATION-
dc.subject.keywordPlusPROPAGATION-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordAuthorAcoustic-porous-structure interaction-
dc.subject.keywordAuthorDelany-Bazley model-
dc.subject.keywordAuthoracoustic analysis-
dc.subject.keywordAuthorempirical material model-
dc.identifier.urlhttps://www.worldscientific.com/doi/abs/10.1142/S0218396X15500022-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Gil Ho photo

Yoon, Gil Ho
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE