Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Carrier transport mechanisms of multilevel nonvolatile memory devices with a floating gate consisting of hybrid organic/inorganic nanocomposites

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Yu Na-
dc.contributor.authorYun, Dong Yeol-
dc.contributor.authorArul, Narayanasamy Sabari-
dc.contributor.authorKim, Tae Whan-
dc.date.accessioned2022-07-16T00:31:49Z-
dc.date.available2022-07-16T00:31:49Z-
dc.date.created2021-05-12-
dc.date.issued2015-02-
dc.identifier.issn1566-1199-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/157967-
dc.description.abstractNonvolatile memory devices based on a poly(4-vinylphenol) (PVP) layer containing Cu2ZnSnS4 (CZTS) nanoparticles were fabricated by using a simple spin-coating method. An energy dispersive spectrum revealed that the CZTS nanoparticles were Cu poor and Zn rich. Transmission electron microscopy images showed that the CZTS nanoparticles were randomly distributed in the PVP layer. Capacitance-voltage (C-V) curves for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices at 1 MHz showed a hysteresis with flat-band voltage (V-fb) shifts, which resulted from the existence of CZTS nanoparticles acting as trap sites in the memory devices. The magnitudes of the V-fb corresponding to the memory window shifts between 1.0 and 2.5 V, as determined from the C-V data at 1 MHz, were dependent on the voltages applied to the memory device, indicative of multilevel characteristics for the memory effect. The operating mechanisms of the writing and the erasing processes for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices are described on the basis of the C-V results and the energy-band diagrams.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.titleCarrier transport mechanisms of multilevel nonvolatile memory devices with a floating gate consisting of hybrid organic/inorganic nanocomposites-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Tae Whan-
dc.identifier.doi10.1016/j.orgel.2014.12.011-
dc.identifier.scopusid2-s2.0-84933509679-
dc.identifier.wosid000348495400035-
dc.identifier.bibliographicCitationORGANIC ELECTRONICS, v.17, pp.270 - 274-
dc.relation.isPartOfORGANIC ELECTRONICS-
dc.citation.titleORGANIC ELECTRONICS-
dc.citation.volume17-
dc.citation.startPage270-
dc.citation.endPage274-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordAuthorNonvolatile memory devices-
dc.subject.keywordAuthorCZTS nanoparticles-
dc.subject.keywordAuthorPVP-
dc.subject.keywordAuthorC-V hysteresis-
dc.subject.keywordAuthorHybrid nanocomposite-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S156611991400559X?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE