Detailed Information

Cited 8 time in webofscience Cited 11 time in scopus
Metadata Downloads

Numerical study of high-speed two-phase ejector performance with R134a refrigerant

Full metadata record
DC Field Value Language
dc.contributor.authorBaek, Sunghoon-
dc.contributor.authorKo, Seungbin-
dc.contributor.authorSong, Simon-
dc.contributor.authorRyu, Sungmin-
dc.date.accessioned2021-08-02T12:51:36Z-
dc.date.available2021-08-02T12:51:36Z-
dc.date.created2021-05-12-
dc.date.issued2018-11-
dc.identifier.issn0017-9310-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/15931-
dc.description.abstractAn ejector is a passive pumping device to increase the flow rate of a motive fluid and to enhance compression of the fluid flow by geometrically induced secondary flows. In particular, the high-speed two-phase ejector has attracted attention as an alternative to the throttling valve, because by compensating the throttling loss that appears in expansion devices it has the potential to improve significantly the performance of refrigeration systems. However, flows inside the ejector are so complex that it is not easy to characterize the relevant flow and thermodynamic behaviors experimentally. In contrast, the numerical approach is relatively favorable to elucidate the relevant physics inside the ejector, and is considered useful to improve the performance of the ejector. However, there have been few relevant numerical studies, because it is challenging to resolve high-speed flows accompanied with phase transitions. In the present study, we present numerical solutions of the high-speed flows inside a two-phase ejector. An evaporation-condensation model is implemented and the real-fluid properties of refrigerant R134a are input in our RANS simulations to resolve phase transitions. Based on the validated predictive ability of our computational apparatus on the baseline model of the ejector, we present a parameter study to identify the effects of geometry variables on the entrainment performance. Our study provides specific guidelines to be considered when designing supersonic two-phase ejectors, and thus, it is expected to contribute to studies associated with supersonic two-phase ejector-equipped refrigeration systems.-
dc.language영어-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleNumerical study of high-speed two-phase ejector performance with R134a refrigerant-
dc.typeArticle-
dc.contributor.affiliatedAuthorSong, Simon-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2018.05.053-
dc.identifier.scopusid2-s2.0-85047619079-
dc.identifier.wosid000442979300088-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.126, pp.1071 - 1082-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.citation.titleINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.citation.volume126-
dc.citation.startPage1071-
dc.citation.endPage1082-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusCYCLE-
dc.subject.keywordAuthorTwo-phase ejector-
dc.subject.keywordAuthorLow pressure refrigeration cycle-
dc.subject.keywordAuthorR134a-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0017931017347282?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Simon photo

Song, Simon
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE