Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Water-repellent Hybrid Nanowire and Micro-scale Denticle Structures on Flexible Substrates of Effective Air Retention

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Sungwon-
dc.contributor.authorAhn, Seongbin-
dc.contributor.authorLee, Heungsoo-
dc.contributor.authorJung, Chul-Min-
dc.contributor.authorSong, Simon-
dc.contributor.authorKim, Dong Rip-
dc.date.accessioned2021-08-02T12:52:02Z-
dc.date.available2021-08-02T12:52:02Z-
dc.date.created2021-05-12-
dc.date.issued2018-11-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/15966-
dc.description.abstractThe air retention capability of a superhydrophobic surface plays the crucial role of drag reduction in an aqueous environment. Here, fabrication of water-repellent hybrid structural surfaces by synthesizing superhydrophobic nanowires with a high aspect ratio on micro-scale denticle structures to improve their air holding capacity in water is reported. The hybrid structure is realized by carrying out polymer molding of denticle structures on flexible substrates, hydrothermal growth of nanowires, and subsequent ultra-thin film coating. This technique is readily applicable to large areas, and the fabricated substrates are attachable onto curved surfaces. Our engineered, super water-repellent hybrid structures are found to effectively maintain air bubbles on their surfaces in a highly shear flow condition with a wall shear stress of up to 33.4 Pa, due to the combined effects of the micro-scale denticle structure, which reduces flow resistance, and the superhydrophobic, high-aspect-ratio nanowire structure, which enhances the capillary force to maintain the air bubbles. Our results show the importance of developing superhydrophobic structures of improved air retention capability.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleWater-repellent Hybrid Nanowire and Micro-scale Denticle Structures on Flexible Substrates of Effective Air Retention-
dc.typeArticle-
dc.contributor.affiliatedAuthorSong, Simon-
dc.contributor.affiliatedAuthorKim, Dong Rip-
dc.identifier.doi10.1038/s41598-018-35075-2-
dc.identifier.scopusid2-s2.0-85056269479-
dc.identifier.wosid000449632300040-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.8, no.1-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume8-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusDIRECT NUMERICAL-SIMULATION-
dc.subject.keywordPlusROTATING-DISK APPARATUS-
dc.subject.keywordPlusDRAG-REDUCTION-
dc.subject.keywordPlusTURBULENT-FLOW-
dc.subject.keywordPlusCONTACT ANGLES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusRIBLETS-
dc.subject.keywordPlusOPTIMIZATION-
dc.identifier.urlhttps://www.nature.com/articles/s41598-018-35075-2-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Simon photo

Song, Simon
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE