Detailed Information

Cited 19 time in webofscience Cited 21 time in scopus
Metadata Downloads

Ag/MnO2 Composite Sheath-Core Structured Yarn Supercapacitors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Ji Hwan-
dc.contributor.authorChoi, Changsoon-
dc.contributor.authorLee, Jae Myeong-
dc.contributor.authorde Andrade, Monica Jung-
dc.contributor.authorBaughman, Ray H.-
dc.contributor.authorKIM, SEON JEONG-
dc.date.accessioned2021-08-02T12:55:02Z-
dc.date.available2021-08-02T12:55:02Z-
dc.date.created2021-05-12-
dc.date.issued2018-09-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/16123-
dc.description.abstractOne-dimensional (1D) yarn or fiber-based supercapacitors that have small diameter, volume and high mechanical strength are needed due to the demands on power source for wearable electronics, micro-devices, and implantable medical devices. The composite sheath is fabricated on a commercially available CNT yarn substrate by alternating depositions of MnO2 and Ag layers. Synergistic effect of high loading level of pseudocapacitive MnO2 and reasonably improved rate-capability are achieved. In the composite sheath, the interconnected networks provide electrical contact between MnO2 aggregates and adjacent Ag layer. The conductive Ag inter layers shorten the solid-state charge diffusion length in the MnO2. Moreover, generated electrons during the charge/discharge process can be collected rapidly by the adjacent Ag layer, therefore, the great extents of MnO2 could be loaded onto the surface of CNT core fiber electrode without a significant rate-capability degradation. Due to the high MnO2 loading level, the composite sheath-core yarn supercapacitor showed excellent specific areal capacitance (322.2 mF/cm(2)) and according energy density (18.3 mu Wh/cm(2)).-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleAg/MnO2 Composite Sheath-Core Structured Yarn Supercapacitors-
dc.typeArticle-
dc.contributor.affiliatedAuthorKIM, SEON JEONG-
dc.identifier.doi10.1038/s41598-018-31611-2-
dc.identifier.scopusid2-s2.0-85052962495-
dc.identifier.wosid000443800900006-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.8-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume8-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusCARBON NANOTUBE YARN-
dc.subject.keywordPlusSOLID-STATE-
dc.subject.keywordPlusFLEXIBLE SUPERCAPACITOR-
dc.subject.keywordPlusMICRO-SUPERCAPACITOR-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordPlusCAPACITOR-
dc.subject.keywordPlusHYBRID-
dc.identifier.urlhttps://www.nature.com/articles/s41598-018-31611-2-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seon Jeong photo

Kim, Seon Jeong
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE