Detailed Information

Cited 6 time in webofscience Cited 8 time in scopus
Metadata Downloads

Immobilized Polydiacetylene Lipid Vesicles on Polydimethylsiloxane Micropillars as a Surfactin-Based Label-Free Bacterial Sensor Platformopen access

Authors
Jannah, FadilatulKim, Jung-HoonLee, Jin-WonKim, Jong-ManKim, Jung-MoggLee, Haiwon
Issue Date
Sep-2018
Publisher
FRONTIERS MEDIA SA
Keywords
biointerfaces; label-free sensor; liposome; polydiacetylene; surfactin; bacteria sensor; polydimethylsiloxane
Citation
FRONTIERS IN MATERIALS, v.5
Indexed
SCIE
SCOPUS
Journal Title
FRONTIERS IN MATERIALS
Volume
5
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/16130
DOI
10.3389/fmats.2018.00057
ISSN
2296-8016
Abstract
Accurate detection and sensing of bacteria are becoming increasingly important not only in microbiology but in a variety of fields including medicine, food, public health, and environmental science. However, even new rapid methods are not convenient enough. Here, we describe a simple and efficient label free bacterial detection system using the polydiacetylene (PDA) liposomes immobilized on the 3D polydimethylsiloxane (PDMS) micropillars. Our system utilizes the colorimetric response of amine functionalized PDA vesicles to surfactin, a bacterial cyclic lipopeptide commonly released by Gram-positive Bacillus species as an antibiotic. To improve the sensitivity of PDA vesicles to surfactin by increasing the number and surface area of immobilized vesicles, the PDA vesicles were immobilized on the micropillar structure to give a hierarchical 3D PDA vesicle structure. For the fabrication of the 3D micropillar structure, polydimethylsiloxane (PDMS) was used to overcome the limitations imposed by silicon-based fabrication. In contrast to the 2D-PDA-PDMS system, which could only hardly detect the presence of 500 it, M surfactin, the 3D-PDA-PDMS system could efficiently detect the presence of 5 OA surfactin and the initial presence of 4 x 101 cells/ml of Bacillus subtilis NCIB3610, which actively produces surfactin. Furthermore, bacterial strains that are known to produce no surfactin, such as Staphylococcus aureus Newman, Escherichia DH5a, and Pseuclomonas aeruginosa PA14 were not detected by our system suggesting that the 3D-PDA-PDMS system is highly specific to surfactin but not to other chemicals produced by bacteria. Taken together, our results suggest that the 3D-PDA-PDMS system can sensitively and selectively be used for the high throughput detection and screening of biotechnologically important surfactin-producing bacterial strains.
Files in This Item
Appears in
Collections
서울 의과대학 > 서울 미생물학교실 > 1. Journal Articles
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles
서울 자연과학대학 > 서울 생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Mogg photo

Kim, Jung Mogg
COLLEGE OF MEDICINE (DEPARTMENT OF MEDICAL MICROBIOLOGY)
Read more

Altmetrics

Total Views & Downloads

BROWSE