Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Constraint force design method for topology optimization of planar rigid-body mechanisms

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Gil Ho-
dc.contributor.authorHeo, Jae Chung-
dc.date.accessioned2022-07-16T12:28:33Z-
dc.date.available2022-07-16T12:28:33Z-
dc.date.created2021-05-12-
dc.date.issued2012-12-
dc.identifier.issn0010-4485-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/164033-
dc.description.abstractThis study develops a new design method called the constraint force design method, which allows topology optimization for planar rigid-body mechanisms. In conventional mechanism synthesis methods, the kinematics of a mechanism are analytically derived and the positions and types of joints of a fixed configuration (hereafter the topology) are optimized to obtain an optimal rigid-body mechanism tracking the intended output trajectory. Therefore, in conventional methods, modification of the configuration or topology of joints and links is normally considered impossible. In order to circumvent the fixed topology limitation in optimally designing rigid-body mechanisms, we present the constraint force design method. This method distributes unit masses simulating revolute or prismatic joints depending on the number of assigned degrees of freedom, analyzes the kinetics of unit masses coupled with constraint forces, and designs the existence of these constraint forces to minimize the root-mean-square error of the output paths of synthesized linkages and a target linkage using a genetic algorithm. The applicability and limitations of the newly developed method are discussed in the context of its application to several rigid-body synthesis problems.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.titleConstraint force design method for topology optimization of planar rigid-body mechanisms-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Gil Ho-
dc.identifier.doi10.1016/j.cad.2012.07.005-
dc.identifier.scopusid2-s2.0-84864795572-
dc.identifier.wosid000309631900012-
dc.identifier.bibliographicCitationCOMPUTER-AIDED DESIGN, v.44, no.12, pp.1277 - 1296-
dc.relation.isPartOfCOMPUTER-AIDED DESIGN-
dc.citation.titleCOMPUTER-AIDED DESIGN-
dc.citation.volume44-
dc.citation.number12-
dc.citation.startPage1277-
dc.citation.endPage1296-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.subject.keywordPlusCOMPLIANT MECHANISMS-
dc.subject.keywordPlusPATH-GENERATION-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusSHAPE-
dc.subject.keywordPlusSHAKE-
dc.subject.keywordAuthorTopology optimization-
dc.subject.keywordAuthorRigid-body mechanism-
dc.subject.keywordAuthorConstraint force method-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0010448512001431?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Gil Ho photo

Yoon, Gil Ho
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE