Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancing Charge Transfer Kinetics by Nanoscale Catalytic Cermet Interlayer

Full metadata record
DC Field Value Language
dc.contributor.authorAn, Jihwan-
dc.contributor.authorKim, Young-Beom-
dc.contributor.authorGuer, Turgut M.-
dc.contributor.authorPrinz, Fritz B.-
dc.date.accessioned2022-07-16T12:31:39Z-
dc.date.available2022-07-16T12:31:39Z-
dc.date.created2021-05-12-
dc.date.issued2012-12-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/164047-
dc.description.abstractEnhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 degrees C, and by 2.3 and 2.7 at 450 degrees C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleEnhancing Charge Transfer Kinetics by Nanoscale Catalytic Cermet Interlayer-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Young-Beom-
dc.identifier.doi10.1021/am3019788-
dc.identifier.scopusid2-s2.0-84871668859-
dc.identifier.wosid000313149800053-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.4, no.12, pp.6789 - 6794-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume4-
dc.citation.number12-
dc.citation.startPage6789-
dc.citation.endPage6794-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusYTTRIA-STABILIZED ZIRCONIA-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusOXIDE FUEL-CELLS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthorsolid oxide fuel cell-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthorinterlayer-
dc.subject.keywordAuthorcermet-
dc.subject.keywordAuthornanoparticle-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/am3019788-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Beom photo

Kim, Young Beom
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE