Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Advances in high permeability polymeric membrane materials for CO2 separationsopen access

Authors
Du, NaiyingPark, Ho BumDal-Cin, Mauro M.Guiver, Michael D.
Issue Date
Jun-2012
Publisher
ROYAL SOC CHEMISTRY
Citation
ENERGY & ENVIRONMENTAL SCIENCE, v.5, no.6, pp.7306 - 7322
Indexed
SCIE
SCOPUS
Journal Title
ENERGY & ENVIRONMENTAL SCIENCE
Volume
5
Number
6
Start Page
7306
End Page
7322
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/165411
DOI
10.1039/c1ee02668b
ISSN
1754-5692
Abstract
Global CO2 emissions have increased steadily in tandem with the use of fossil fuels. A paradigm shift is needed in developing new ways by which energy is supplied and utilized, together with the mitigation of climate change through CO2 reduction technologies. There is an almost universal acceptance of the link between rising anthropogenic CO2 levels due to fossil fuel combustion and global warming accompanied by unpredictable climate change. Therefore, renewable energy, non-fossil fuels and CO2 capture and storage (CCS) must be deployed on a massive scale. CCS technologies provide a means for reducing greenhouse gas emissions, in addition to the current strategies of improving energy efficiency. Coal-fired power plants are among the main large-scale CO2 emitters, and capture of the CO2 emissions can be achieved with conventional technologies such as amine absorption. However, this energy-consuming process, calculated at approximately 30% of the power plant capacity, would result in unacceptable increases in power generation costs. Membrane processes offer a potentially viable energy-saving alternative for CO2 capture because they do not involve any phase transformation. However, typical gas separation membranes that are currently available have insufficiently high permeability to be able to process the massive volumes of flue gas, which would result in a high CO2 capture. Polymer membranes highly permeable to CO2 and having good selectivity should be developed for the membrane process to be viable. This perspective review summarizes recent noteworthy advances in polymeric materials having very high CO2 permeability and good CO2/N-2 selectivity that largely surpass the separation performance of conventional polymer materials. Five important classes of polymer membrane materials are highlighted: polyimides, thermally rearranged polymers (TRs), substituted polyacetylenes, polymers with intrinsic microporosity (PIM) and polyethers, which provide insights into polymer designs suitable for CO2 separation from, for example, the post-combustion flue gases in coal-fired power plants.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Ho Bum photo

Park, Ho Bum
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE