Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Experimental study of electrical switching characteristics of vanadium oxide thin films on bipolar plates for improving thaw-at-start

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Hye-Mi-
dc.contributor.authorJung-Hun-
dc.contributor.authorUM, Suk kee-
dc.date.accessioned2022-07-16T16:16:25Z-
dc.date.available2022-07-16T16:16:25Z-
dc.date.created2021-05-13-
dc.date.issued2012-03-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/166093-
dc.description.abstractThe ultimate goal of cold start of hydrogen-powered polymer electrolyte fuel cell vehicles is to minimize the significant system thaw energy requirement and to achieve the short time period desired for freeze start (e.g. less than 30 seconds) in a subfreezing environment. As part of an effort to improve cold start capability for fuel cell vehicles, this work presents a new thaw-at-start strategy using electrical characteristics of vanadium oxide thin films as self-heating source at sub-zero temperature. Vanadium-based thin film coated on the surface of flat bipolar plates (e.g. carbon-based graphite and metallic bipolar plates) have been synthesized by a dip-coating method via aqueous sol-gel chemistry. Subsequently, the detailed in-/ex-situ analyses of the thin films have been carried out using diverse diagnostic techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to investigate the chemical composition, crystallinity, and microstructure. In addition, electrical switching characteristics of the thin films on bipolar plates was cautiously observed over a temperature range from -20°C to 80°C by means of 4-point probes installed in a thermo -hygrostat. By doing so, it has been possible to correctly infer the relationship between a tendency of the thermally-induced electrical switching hysteresis and bipolar plate materials. Also, comprehensive theoretical study on the basis of the experimental results have been performed to estimate the heat dissipation rate by Joule heating from the solid thin films on bipolar plates for the rapid cold-start operation of fuel cell vehicles.-
dc.language영어-
dc.language.isoen-
dc.publisherASME-
dc.titleExperimental study of electrical switching characteristics of vanadium oxide thin films on bipolar plates for improving thaw-at-start-
dc.typeArticle-
dc.contributor.affiliatedAuthorUM, Suk kee-
dc.identifier.doi10.1115/FuelCell2011-54561-
dc.identifier.scopusid2-s2.0-84881648802-
dc.identifier.bibliographicCitationASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011, pp.293 - 299-
dc.relation.isPartOfASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011-
dc.citation.titleASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011-
dc.citation.startPage293-
dc.citation.endPage299-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusBipolar plate materials-
dc.subject.keywordPlusDiagnostic techniques-
dc.subject.keywordPlusElectrical characteristic-
dc.subject.keywordPlusHeat dissipation rates-
dc.subject.keywordPlusMetallic bipolar plates-
dc.subject.keywordPlusPolymer electrolyte fuel cells-
dc.subject.keywordPlusSub-zero temperatures-
dc.subject.keywordPlusVanadium oxide thin films-
dc.subject.keywordPlusFuel cells-
dc.subject.keywordPlusOxides-
dc.subject.keywordPlusPhotoelectrons-
dc.subject.keywordPlusScanning electron microscopy-
dc.subject.keywordPlusSol-gels-
dc.subject.keywordPlusStarting-
dc.subject.keywordPlusSustainable development-
dc.subject.keywordPlusThawing-
dc.subject.keywordPlusThin films-
dc.subject.keywordPlusX ray diffraction-
dc.subject.keywordPlusX ray photoelectron spectroscopy-
dc.subject.keywordPlusStainless steel-
dc.identifier.urlhttps://asmedigitalcollection.asme.org/FUELCELL/proceedings-abstract/FUELCELL2011/54693/293/357930-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher UM, Suk kee photo

UM, Suk kee
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE