Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sensitivity analysis of RCS depressurization strategy under a postulated SGTR accident in OPR1000

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Wonjun-
dc.contributor.authorKim, Taeseok-
dc.contributor.authorJeon, Joongoo-
dc.contributor.authorKim, Nam Kyung-
dc.contributor.authorKim, Sung Joong-
dc.date.accessioned2021-08-02T13:27:40Z-
dc.date.available2021-08-02T13:27:40Z-
dc.date.created2021-05-11-
dc.date.issued2018-07-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/16845-
dc.description.abstractSteam generator tube rupture (SGTR) accident is one of important accident that has high probability of resulting in severe accidents. As a bypass scenario, fission product can be directly released to the environment during the SGTR accident. Thus, the severe accident by SGTR should be carefully managed by severe accident management guidance (SAMG). In Korea, SAMG for optimized power reactor 1000 (OPR1000) has been developed in 1999 and used to mitigate the severe accident of OPR1000 with seven mitigation strategies. Among the mitigation strategies, ‘Depressurization of reactor coolant system (RCS)’ is one of the most powerful strategies to reduce direct release of the fission product. To reduce the RCS pressure, indirect depressurization using steam generator is generally recommended. However, depending on the RCS condition, the indirect depressurization can be ineffective to reduce the RCS pressure. In this case, direct depressurization using pilot operated relief valve (PORV) should be performed as a second plan. From this point of view, sensitivity study of RCS depressurization was performed to investigate priority of depressurization in this study. The severe accident scenario initiated by SGTR accident was selected from probabilistic safety assessment (PSA) level 1 report and simulated using MELCOR 2.1. For the mitigation strategy, various timing of depressurization, the number of opening valves and flow rate of feed water were applied to simulate the possible depressurization strategies during the severe accident. The MELCOR code simulation shows that if depressurization was performed at 30 minutes after SAMG entrance, the direct depressurization was more efficient to reduce the RCS pressure and the fission product release. Therefore, it was recommended to use direct depressurization rather than indirect depressurization in certain time. The sensitivity of flow rate of feed water and different number of opening valves were insignificant for progress of the accident and fission product release. In conclusion, operators should select the way of depressurization to reduce the RCS pressure and the fission product release during the SGTR accident, considering the condition of the plant such as accident progress and availability of safety features. To suggest more proper information for depressurization, more sensitivity analysis and detailed thermal-hydraulic analysis should be performed for the future work.-
dc.language영어-
dc.language.isoen-
dc.publisherAmerican Society of Mechanical Engineers (ASME)-
dc.titleSensitivity analysis of RCS depressurization strategy under a postulated SGTR accident in OPR1000-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sung Joong-
dc.identifier.doi10.1115/ICONE26-82074-
dc.identifier.scopusid2-s2.0-85062394947-
dc.identifier.bibliographicCitationInternational Conference on Nuclear Engineering, Proceedings, ICONE, v.7-
dc.relation.isPartOfInternational Conference on Nuclear Engineering, Proceedings, ICONE-
dc.citation.titleInternational Conference on Nuclear Engineering, Proceedings, ICONE-
dc.citation.volume7-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusBoilers-
dc.subject.keywordPlusElectric equipment protection-
dc.subject.keywordPlusFission products-
dc.subject.keywordPlusNuclear engineering-
dc.subject.keywordPlusPressure relief valves-
dc.subject.keywordPlusRadiation decontamination-
dc.subject.keywordPlusRadiation protection-
dc.subject.keywordPlusSensitivity analysis-
dc.subject.keywordPlusWaste management-
dc.subject.keywordPlusWater-
dc.subject.keywordPlusDepressurizations-
dc.subject.keywordPlusMitigation strategy-
dc.subject.keywordPlusProbabilistic safety assessment-
dc.subject.keywordPlusReactor coolant systems-
dc.subject.keywordPlusSensitivity studies-
dc.subject.keywordPlusSevere accident management-
dc.subject.keywordPlusSteam generator tube ruptures-
dc.subject.keywordPlusThermal-hydraulic analysis-
dc.subject.keywordPlusNuclear reactor accidents-
dc.identifier.urlhttps://asmedigitalcollection.asme.org/ICONE/proceedings-abstract/ICONE26/51517/V007T11A011/273353-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sung Joong photo

Kim, Sung Joong
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE