Detailed Information

Cited 6 time in webofscience Cited 5 time in scopus
Metadata Downloads

Porphyrin-Stabilized CNT in Nanofiber via Non-Covalent Interaction for Enhanced Electrochemical Performance

Full metadata record
DC Field Value Language
dc.contributor.authorLim, Alan Christian-
dc.contributor.authorKwon, Hyuk Jae-
dc.contributor.authorJadhav, Harsharaj S.-
dc.contributor.authorSeo, Jeong Gil-
dc.date.accessioned2021-08-02T13:28:00Z-
dc.date.available2021-08-02T13:28:00Z-
dc.date.created2021-05-14-
dc.date.issued2018-06-
dc.identifier.issn0013-4686-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/16867-
dc.description.abstractHerein, a new fabrication method for CNT nanofiber composite (pPC-FP) through non-covalent interaction between porphyrin monomers with CNTs is reported. This led to the alleviated agglomeration of pristine CNT without acid pre-treatment, producing a highly porous material with high surface area of 444 m(2)/g and narrow pore size distribution for all pPC-FP nanofiber composites. Enhanced performances of pPC-FP3 and pPC-FP5 (CNT nanofiber with porphyrin monomers) were brought about by the enhanced CNT dispersion, hence, better porosity as compared to pPC. Moreover, through the incorporation of porphyrin monomer, M-NeC bond was simultaneously formed and served as a contributor to the excellent capacitive performance of the material, resulting in the highest capacitance of 150 A/cm(2) at 0.25 mAh/cm(2) with 77 A/cm(2) at 2.5 mAh/cm(2). The composites also exhibited stable performance even after cycling at different current densities (0.25-2.5 mAh/cm(2)) for 3000 cycles with almost 100% columbic efficiency. Through p-p stacking interaction, the agglomeration was prevented and CNT was aligned along the axis of the polymer which rendered the nanofibers highly porous resulting to a conductive composite material with excellent electrochemical performance.-
dc.language영어-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titlePorphyrin-Stabilized CNT in Nanofiber via Non-Covalent Interaction for Enhanced Electrochemical Performance-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeo, Jeong Gil-
dc.identifier.doi10.1016/j.electacta.2018.04.064-
dc.identifier.scopusid2-s2.0-85045552939-
dc.identifier.wosid000432158000014-
dc.identifier.bibliographicCitationELECTROCHIMICA ACTA, v.274, pp.112 - 120-
dc.relation.isPartOfELECTROCHIMICA ACTA-
dc.citation.titleELECTROCHIMICA ACTA-
dc.citation.volume274-
dc.citation.startPage112-
dc.citation.endPage120-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusFUNCTIONALIZATION-
dc.subject.keywordPlusAIR-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordAuthorPorphyrin-
dc.subject.keywordAuthorNanofiber-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorSupercapacitor-
dc.subject.keywordAuthorNon-covalent interaction-
dc.subject.keywordAuthorCapacitance-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0013468618307953?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Jeong Gil photo

Seo, Jeong Gil
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE