Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A feasibility study of CO2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea

Full metadata record
DC Field Value Language
dc.contributor.authorKang, S.-
dc.contributor.authorSeol, S.J.-
dc.contributor.authorByun, Joongmoo-
dc.date.accessioned2022-07-16T22:26:37Z-
dc.date.available2022-07-16T22:26:37Z-
dc.date.created2021-05-11-
dc.date.issued2011-01-
dc.identifier.issn1052-3812-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/169319-
dc.description.abstractReservoir production monitoring using mCSEM has been studied because it is sensitive to resistivity changes resulting from variations in hydrocarbon saturation. However, mCSEM for CO2 sequestration monitoring has scarcely been investigated, although the mCSEM method is advantageous for monitoring CO2 injection and migration because of high correlation between CO2 saturation and resistivity. In order to investigate the feasibility of mCSEM monitoring for CO2 sequestration, we conducted numerical experiments of representative CO2 injection models at a deep brine aquifer in a shallow sea. By using a modified secondary field method, we effectively addressed airwave problem occurring when mCSEM is applied to a target beneath a shallow sea. Furthermore, the developed 2.5D modeling algorithm was satisfied with very high accuracy which is essential for the simulation of electromagnetic fields generated by CO2 injection in a deep brine aquifer. The mCSEM response of CO2 sequestration reservoir, which is enhanced by modified secondary field method, is small but measurable changes in a given pseudo-realistic CO2 sequestration scenario.-
dc.language영어-
dc.language.isoen-
dc.titleA feasibility study of CO2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea-
dc.typeArticle-
dc.contributor.affiliatedAuthorByun, Joongmoo-
dc.identifier.doi10.1190/1.3628171-
dc.identifier.scopusid2-s2.0-84857600905-
dc.identifier.bibliographicCitationSEG Technical Program Expanded Abstracts, v.30, no.1, pp.687 - 692-
dc.relation.isPartOfSEG Technical Program Expanded Abstracts-
dc.citation.titleSEG Technical Program Expanded Abstracts-
dc.citation.volume30-
dc.citation.number1-
dc.citation.startPage687-
dc.citation.endPage692-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorCSEM-
dc.subject.keywordAuthorFinite element-
dc.subject.keywordAuthorFrequency-domain-
dc.subject.keywordAuthorModeling-
dc.subject.keywordAuthorMonitoring-
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 자원환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Byun, Joongmoo photo

Byun, Joongmoo
COLLEGE OF ENGINEERING (DEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE