Detailed Information

Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads

Techniques for Efficient Computation of Electric Fields Generated by Transcranial Direct-Current Stimulation

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chany-
dc.contributor.authorKim, Euijin-
dc.contributor.authorIm, Chang-Hwan-
dc.date.accessioned2021-08-02T13:29:48Z-
dc.date.available2021-08-02T13:29:48Z-
dc.date.created2021-05-12-
dc.date.issued2018-05-
dc.identifier.issn0018-9464-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/16975-
dc.description.abstractEnhancement of computational efficiency is highly critical for finite-element analysis of electric fields generated by transcranial direct-current stimulation (tDCS) in order to foster field-analysis-based customized brain stimulation in practical scenarios. In this communication, we applied domain decomposition method (DDM) and adaptive mesh refinement method to the analysis of tDCS. DDM is likely to be particularly useful for tDCS field analysis problems with extracephalic reference electrodes. Our simulation results demonstrated that the DDM adopting the Schur complement method could reduce the overall computational time by 15% compared to the conventional single-domain analysis. On the other hand, to verify the enhancement of computational efficiency by adaptive mesh refinement, we used a realistic human head model with two sponge electrodes attached on the scalp surface. The distribution of numerical error estimated using an a posteriori error estimation method demonstrated that high errors were mostly concentrated on the edges and corners of the sponge electrodes. The overall solution accuracy could be remarkably enhanced by adding about 250 nodes around the high-error regions.-
dc.language영어-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleTechniques for Efficient Computation of Electric Fields Generated by Transcranial Direct-Current Stimulation-
dc.typeArticle-
dc.contributor.affiliatedAuthorIm, Chang-Hwan-
dc.identifier.doi10.1109/TMAG.2018.2794501-
dc.identifier.scopusid2-s2.0-85042133349-
dc.identifier.wosid000430701700012-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MAGNETICS, v.54, no.5, pp.1 - 5-
dc.relation.isPartOfIEEE TRANSACTIONS ON MAGNETICS-
dc.citation.titleIEEE TRANSACTIONS ON MAGNETICS-
dc.citation.volume54-
dc.citation.number5-
dc.citation.startPage1-
dc.citation.endPage5-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusERROR ESTIMATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordAuthorAdaptive mesh refinement-
dc.subject.keywordAuthordomain decomposition method (DDM)-
dc.subject.keywordAuthorerror estimation-
dc.subject.keywordAuthorfinite-element method (FEM)-
dc.subject.keywordAuthortranscranial direct-current stimulation (tDCS)-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8291746-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Im, Chang Hwan photo

Im, Chang Hwan
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE