Detailed Information

Cited 4 time in webofscience Cited 6 time in scopus
Metadata Downloads

Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas

Authors
Nguyen, Thu Ha ThiPark, SeunghyeJeong, JooyeonShin, Ye SolSim, Sang JunJin, EonSeon
Issue Date
Oct-2020
Publisher
SPRINGER
Keywords
Lipid catabolism; CRISPR-Cas9 technology; Metabolic engineering; Chlorophyta
Citation
JOURNAL OF APPLIED PHYCOLOGY, v.32, no.5, pp.2829 - 2840
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF APPLIED PHYCOLOGY
Volume
32
Number
5
Start Page
2829
End Page
2840
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/1733
DOI
10.1007/s10811-020-02172-7
ISSN
0921-8971
Abstract
In response to the energy crisis microalgae are a promising feedstock for biofuel production. The use of metabolic engineering to improve yields of biofuel-related lipid components in microalgae, without affecting cell growth, is now recognized as a promising and more economically feasible approach to develop more sustainable energy sources. For this, we generatedChlamydomonasmutant strains using CRISPR-Cas9 technology to knockout a gene involved in fatty acid (FA) degradation. In the knockout mutant, total lipid accumulated up to 28% of dried biomass, while that of wild-type (WT) was 22%. This increase was also accompanied by a noticeable shift in FA composition with an increase up to 27.2% in the C18:1 proportion. In addition, these mutants showed comparable growth rate to the WT, indicating that inhibiting lipid catabolism through gene editing technology is a promising strategy to develop microalgal strains for biofuel production.
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jin, Eon Seon photo

Jin, Eon Seon
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF LIFE SCIENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE