Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Sanghun-
dc.contributor.authorBaek, Keuntae-
dc.contributor.authorSo, Hongyun-
dc.date.accessioned2023-05-03T09:41:40Z-
dc.date.available2023-05-03T09:41:40Z-
dc.date.created2023-04-06-
dc.date.issued2023-04-
dc.identifier.issn0360-1323-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/184866-
dc.description.abstractIndoor air quality (IAQ) monitoring technology is crucial for achieving optimized heating, ventilation, and air conditioning (HVAC) strategies for efficient energy management. In this study, a fully convolutional network (FCN)-based deep learning regression model was proposed to overcome the limitations of conventional computational methods and deep neural network (DNN) architectures. Through a data-driven image-to-image training model, rapid prediction of the mean age of air (MAA) was realized without spatial information loss. In addition, even for the changed internal geometry, robust MAA prediction was realized without additional model training or structural changes via a data preprocessing method of generating 2D images. Consequently, compared with the DNN regression model, prediction error using the FCN-based model, in terms of mean absolute error and root mean squared error, was decreased by ∼43.14% and ∼34.77%, respectively. Furthermore, the prediction performances for untrained conditions using additional prepared test datasets were compared quantitatively and qualitatively, depending on the divided zones. These results support a novel virtual sensing method for IAQ monitoring systems for future digital transformation technologies, HVAC, and energy management.-
dc.language영어-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleRapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model-
dc.typeArticle-
dc.contributor.affiliatedAuthorSo, Hongyun-
dc.identifier.doi10.1016/j.buildenv.2023.110191-
dc.identifier.scopusid2-s2.0-85150419085-
dc.identifier.wosid000953784800001-
dc.identifier.bibliographicCitationBUILDING AND ENVIRONMENT, v.234, pp.1 - 9-
dc.relation.isPartOfBUILDING AND ENVIRONMENT-
dc.citation.titleBUILDING AND ENVIRONMENT-
dc.citation.volume234-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaConstruction & Building Technology-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryConstruction & Building Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.subject.keywordPlusMEAN AGE-
dc.subject.keywordPlusSEMANTIC SEGMENTATION-
dc.subject.keywordPlusTHERMAL COMFORT-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusVENTILATION-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusDROPOUT-
dc.subject.keywordAuthorHVAC-
dc.subject.keywordAuthorMean age of air-
dc.subject.keywordAuthorFully convolutional network-
dc.subject.keywordAuthorRegression-
dc.subject.keywordAuthorVirtual sensors-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0360132323002184?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher So, Hong yun photo

So, Hong yun
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE