Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Silicone engineered anisotropic lithography for ultrahigh-density OLEDs

Full metadata record
DC Field Value Language
dc.contributor.authorKweon, Hyukmin-
dc.contributor.authorChoi, Keun-Yeong-
dc.contributor.authorPark, Han Wool-
dc.contributor.authorLee, Ryungyu-
dc.contributor.authorJeong, Ukjin-
dc.contributor.authorKim, Min Jung-
dc.contributor.authorHong, Hyunmin-
dc.contributor.authorHa, Borina-
dc.contributor.authorLee, Sein-
dc.contributor.authorKwon, Jang-Yeon-
dc.contributor.authorChung, Kwun-Bum-
dc.contributor.authorKang, Moon Sung-
dc.contributor.authorLee, Hojin-
dc.contributor.authorKim, Do Hwan-
dc.date.accessioned2023-05-03T10:24:41Z-
dc.date.available2023-05-03T10:24:41Z-
dc.date.created2023-01-05-
dc.date.issued2022-12-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/185135-
dc.description.abstractUltrahigh-resolution patterning with high-throughput and high-fidelity is highly in demand for expanding the potential of organic light-emitting diodes (OLEDs) from mobile and TV displays into near-to-eye microdisplays. However, current patterning techniques so far suffer from low resolution, consecutive pattern for RGB pixelation, low pattern fidelity, and throughput issue. Here, we present a silicone engineered anisotropic lithography of the organic light-emitting semiconductor (OLES) that in-situ forms a non-volatile etch-blocking layer during reactive ion etching. This unique feature not only slows the etch rate but also enhances the anisotropy of etch direction, leading to gain delicate control in forming ultrahigh-density multicolor OLES patterns (up to 4500 pixels per inch) through photolithography. This patterning strategy inspired by silicon etching chemistry is expected to provide new insights into ultrahigh-density OLED microdisplays.-
dc.language영어-
dc.language.isoen-
dc.publisherNature Research-
dc.titleSilicone engineered anisotropic lithography for ultrahigh-density OLEDs-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Do Hwan-
dc.identifier.doi10.1038/s41467-022-34531-y-
dc.identifier.scopusid2-s2.0-85143745526-
dc.identifier.wosid000910340500001-
dc.identifier.bibliographicCitationNature Communications, v.13, no.1, pp.1 - 10-
dc.relation.isPartOfNature Communications-
dc.citation.titleNature Communications-
dc.citation.volume13-
dc.citation.number1-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordPlusDISPLAYS-
dc.subject.keywordPlusDEVICES-
dc.identifier.urlhttps://www.nature.com/articles/s41467-022-34531-y-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Do Hwan photo

Kim, Do Hwan
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE