Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Hyeokjun-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorOh, Si Hyoung-
dc.contributor.authorPark, Jooha-
dc.contributor.authorLim, Hee-Dae-
dc.contributor.authorKang, Kisuk-
dc.date.accessioned2023-07-05T03:58:56Z-
dc.date.available2023-07-05T03:58:56Z-
dc.date.created2023-07-03-
dc.date.issued2020-12-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/186226-
dc.description.abstractMagnesium (Mg) rechargeable batteries are one of the promising high-energy post-lithium battery chemistries exploiting the multivalent charge carrier. However, the use of magnesium metal has been challenging due to the formation of the ion-blocking passivation layer on magnesium metal in most organic electrolytes. Herein, we propose a new strategy to transform the passivating film into a Mg2+-conductive interphase via simple chemisorption of sulfur dioxide molecules on magnesium metal. The facile chemical tuning converts the magnesium oxide-based passivation layer into a magnesium sulfate-like phase, which greatly enhances the charge-transfer capability of multivalent Mg2+ ions. The reduced surface resistance of the magnesium metal results in efficient magnesium stripping/deposition reactions even under conventional ether-based electrolytes. Theoretical calculations support that the facile ionic conduction is attributed to the relatively low Mg2+ dissociation and migration energies in the tailored interphases. Furthermore, we elucidate the degradation mechanism of magnesium electrodes by combining various experimental analyses with computational calculations.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleTailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorLim, Hee-Dae-
dc.identifier.doi10.1021/acsenergylett.0c02102-
dc.identifier.scopusid2-s2.0-85096721520-
dc.identifier.wosid000599605500010-
dc.identifier.bibliographicCitationACS ENERGY LETTERS, v.5, no.12, pp.3733 - 3740-
dc.relation.isPartOfACS ENERGY LETTERS-
dc.citation.titleACS ENERGY LETTERS-
dc.citation.volume5-
dc.citation.number12-
dc.citation.startPage3733-
dc.citation.endPage3740-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusWIDE ELECTROCHEMICAL WINDOWS-
dc.subject.keywordPlusELECTROLYTE-SOLUTIONS-
dc.subject.keywordPlusSO2-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusADDITIVES-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCO2-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsenergylett.0c02102-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Hee Dae photo

Lim, Hee Dae
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE