Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Preferred diffusion paths for copper electromigration by in situ transmission electron microscopy

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Young-Hwa-
dc.contributor.authorKim, Sung-Il-
dc.contributor.authorKim, Miyoung-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorKim, Young-Woon-
dc.date.accessioned2021-08-02T14:28:46Z-
dc.date.available2021-08-02T14:28:46Z-
dc.date.created2021-05-14-
dc.date.issued2017-10-
dc.identifier.issn0304-3991-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/18708-
dc.description.abstractIonic transport in the reverse direction of an electric field is caused by momentum transfer from free electrons to metal ions, i.e., electromigration (EM), which is a critical factor leading to copper (Cu) interconnect failure in integrated circuits under extreme operating-conditions. We investigated Cu self-diffusion paths under electrical bias using in situ transmission electron microscopy (TEM). An electric current was applied to multigrain Cu lines in the TEM instrument for durations of up to the order of 10⁴ s to trace EM-induced Cu movement around voids and hillocks. Combining this approach with scanning nanobeam diffraction, we observed that high-angle grain boundaries exposed to the free surface are the most favored paths for Cu EM, rather than a specific orientation within the grain. On hillocks of accumulated Cu atoms, we directly observed grain growth, accompanied by the formation of Sigma 7 high-mobile and Sigma 3 twin coincidence site lattice boundaries for effective growth. This study provides insight into the EM mechanism to improve the reliability of metal interconnect design.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.titlePreferred diffusion paths for copper electromigration by in situ transmission electron microscopy-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Seung Yong-
dc.identifier.doi10.1016/j.ultramic.2017.05.018-
dc.identifier.scopusid2-s2.0-85019972242-
dc.identifier.wosid000411170800019-
dc.identifier.bibliographicCitationULTRAMICROSCOPY, v.181, pp.160 - 164-
dc.relation.isPartOfULTRAMICROSCOPY-
dc.citation.titleULTRAMICROSCOPY-
dc.citation.volume181-
dc.citation.startPage160-
dc.citation.endPage164-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMicroscopy-
dc.relation.journalWebOfScienceCategoryMicroscopy-
dc.subject.keywordPlusGRAIN-GROWTH-
dc.subject.keywordPlusDAMASCENE CU-
dc.subject.keywordPlusINTERCONNECTS-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusRELIABILITY-
dc.subject.keywordPlusBOUNDARIES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusTEXTURE-
dc.subject.keywordAuthorCopper-
dc.subject.keywordAuthorDiffusion-
dc.subject.keywordAuthorElectromigration-
dc.subject.keywordAuthorInterconnect-
dc.subject.keywordAuthorIn situ transmission electron microscopy-
dc.identifier.urlhttps://linkinghub.elsevier.com/retrieve/pii/S0304399117300955-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seung Yong photo

Lee, Seung Yong
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE