Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced Stability of Coated Carbon Electrode for Li-O-2 Batteries and Its Limitations

Authors
Bae, YoungjoonKo, Dong-HyunLee, SunyoungLim, Hee-DaeKim, Yun-JungShim, Hyun-SooPark, HyeokjunKo, YoungminPark, Sung KwanKwon, Hyuk JaeKim, HyunjinKim, Hee-TakMin, Yo-SepIm, DongminKang, Kisuk
Issue Date
Jun-2018
Publisher
WILEY-V C H VERLAG GMBH
Keywords
atomic layer deposition; carbon defect; in situ differential electrochemical mass spectroscopy; lithium-oxygen batteries; stability
Citation
ADVANCED ENERGY MATERIALS, v.8, no.16, pp.1 - 9
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED ENERGY MATERIALS
Volume
8
Number
16
Start Page
1
End Page
9
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/187548
DOI
10.1002/aenm.201702661
ISSN
1614-6832
Abstract
Li-O-2 batteries are promising next-generation energy storage systems because of their exceptionally high energy density (approximate to 3500 W h kg(-1)). However, to achieve stable operation, grand challenges remain to be resolved, such as preventing electrolyte decomposition and degradation of carbon, a commonly used air electrode in Li-O-2 batteries. In this work, using in situ differential electrochemical mass spectrometry, it is demonstrated that the application of a ZnO coating on the carbon electrode can effectively suppress side reactions occurring in the Li-O-2 battery. By probing the CO2 evolution during charging of C-13-labeled air electrodes, the major sources of parasitic reactions are precisely identified, which further reveals that the ZnO coating retards the degradation of both the carbon electrode and electrolyte. The successful suppression of the degradation results in a higher oxygen efficiency, leading to enhanced stability for more than 100 cycles. Nevertheless, the degradation of the carbon electrode is not completely prevented by the coating, because the Li2O2 discharge product gradually grows at the interface between the ZnO and carbon, which eventually results in detachment of the ZnO particles from the electrode and subsequent deterioration of the performance. This finding implies that surface protection of the carbon electrode is a viable option to enhance the stability of Li-O-2 batteries; however, fundamental studies on the growth mechanism of the discharge product on the carbon surface are required along with more effective coating strategies.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Hee Dae photo

Lim, Hee Dae
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE