Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics

Full metadata record
DC Field Value Language
dc.contributor.authorBoahen, Elvis K.-
dc.contributor.authorPan, Baohai-
dc.contributor.authorKweon, Hyukmin-
dc.contributor.authorKim, Joo Sung-
dc.contributor.authorChoi, Hanbin-
dc.contributor.authorKong, Zhengyang-
dc.contributor.authorKim, Dong Jun-
dc.contributor.authorZhu, Jin-
dc.contributor.authorYing, Wu Bin-
dc.contributor.authorLee, Kyung Jin-
dc.contributor.authorKim, Do Hwan-
dc.date.accessioned2023-09-18T05:31:20Z-
dc.date.available2023-09-18T05:31:20Z-
dc.date.created2023-01-05-
dc.date.issued2022-12-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/190523-
dc.description.abstractThe self-healing properties and ionic sensing capabilities of the human skin offer inspiring groundwork for the designs of stretchable iontronic skins. However, from electronic to ionic mechanosensitive skins, simultaneously achieving autonomously superior self-healing properties, superior elasticity, and effective control of ion dynamics in a homogeneous system is rarely feasible. Here, we report a Cl-functionalized iontronic pressure sensitive material (CLiPS), designed via the introduction of Cl-functionalized groups into a polyurethane matrix, which realizes an ultrafast, autonomous self-healing speed (4.3 µm/min), high self-healing efficiency (91% within 60 min), and mechanosensitive piezo-ionic dynamics. This strategy promotes both an excellent elastic recovery (100%) and effective control of ion dynamics because the Cl groups trap the ions in the system via ion-dipole interactions, resulting in excellent pressure sensitivity (7.36 kPa−1) for tactile sensors. The skin-like sensor responds to pressure variations, demonstrating its potential for touch modulation in future wearable electronics and human–machine interfaces.-
dc.language영어-
dc.language.isoen-
dc.publisherNature Research-
dc.titleUltrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Do Hwan-
dc.identifier.doi10.1038/s41467-022-35434-8-
dc.identifier.scopusid2-s2.0-85143992980-
dc.identifier.wosid000969735000032-
dc.identifier.bibliographicCitationNature Communications, v.13, no.1, pp.1 - 11-
dc.relation.isPartOfNature Communications-
dc.citation.titleNature Communications-
dc.citation.volume13-
dc.citation.number1-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusPOLYURETHANE-
dc.subject.keywordPlusSUBSTITUTION-
dc.subject.keywordPlusRELAXATION-
dc.subject.keywordPlusRECEPTORS-
dc.identifier.urlhttps://www.nature.com/articles/s41467-022-35434-8-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Do Hwan photo

Kim, Do Hwan
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE