Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of extremal precipitation by quantile regression forests: from SNU Multiscale Team

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Seoncheol-
dc.contributor.authorKwon, Junhyeon-
dc.contributor.authorKim, Joonpyo-
dc.contributor.authorOh, Hee-Seok-
dc.date.accessioned2023-09-18T07:18:28Z-
dc.date.available2023-09-18T07:18:28Z-
dc.date.created2023-07-07-
dc.date.issued2018-09-
dc.identifier.issn1386-1999-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/190966-
dc.description.abstractThis paper considers the problem of spatio-temporal extreme value prediction of precipitation data. This work presents some methods that predict monthly extremes over the next 20 years corresponding to 0.998 quantile at several stations over a certain region. The proposed methods are based on a novel combination of quantile regression forests and circular transformation. As the core of the methodology, quantile regression forests by combining many decorrelated bootstrapping trees may improve prediction performance, and circular transformation is used for building circular transformed predictors of months, which are put into the quantile regression forests model for prediction. The empirical performance of the proposed methods are evaluated through real data analysis, which demonstrates promising results of the proposed approaches.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGER-
dc.titlePrediction of extremal precipitation by quantile regression forests: from SNU Multiscale Team-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Seoncheol-
dc.identifier.doi10.1007/s10687-018-0323-y-
dc.identifier.scopusid2-s2.0-85046762724-
dc.identifier.wosid000445371300013-
dc.identifier.bibliographicCitationEXTREMES, v.21, no.3, pp.463 - 476-
dc.relation.isPartOfEXTREMES-
dc.citation.titleEXTREMES-
dc.citation.volume21-
dc.citation.number3-
dc.citation.startPage463-
dc.citation.endPage476-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorCircular transform-
dc.subject.keywordAuthorExtreme precipitation-
dc.subject.keywordAuthorPrediction-
dc.subject.keywordAuthorQuantile regression forests-
dc.subject.keywordAuthorSpatio-temporal extremes-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10687-018-0323-y-
Files in This Item
Go to Link
Appears in
Collections
서울 자연과학대학 > 서울 수학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Seoncheol photo

Park, Seoncheol
COLLEGE OF NATURAL SCIENCES (DEPARTMENT OF MATHEMATICS)
Read more

Altmetrics

Total Views & Downloads

BROWSE