Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Neural-inspired artificial synapses based on low-voltage operated organic electrochemical transistors

Full metadata record
DC Field Value Language
dc.contributor.authorBhunia, Ritamay-
dc.contributor.authorBoahen, Elvis K.-
dc.contributor.authorKim, Dong Jun-
dc.contributor.authorOh, Hayoung-
dc.contributor.authorKong, Zhengyang-
dc.contributor.authorKim, Do Hwan-
dc.date.accessioned2023-10-10T02:59:58Z-
dc.date.available2023-10-10T02:59:58Z-
dc.date.created2023-05-30-
dc.date.issued2023-05-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/191994-
dc.description.abstractArtificial synaptic devices that emulate the neural functionalities of the human brain have received research attention owing to their inherent ability to build brain-like computing systems with faster data-processing speeds and storage capabilities at low voltages. This emerging technology is a promising approach for overcoming the bottlenecks of the conventional von Neumann architecture, such as low data-processing speed and high power consumption owing to the physical separation of processing and storage units. Among the many candidates for artificial synaptic devices, organic electrochemical transistors have been intensively investigated because they enable high transconductance, large current modulation ratios, and lower operating voltages. This review focuses on recent advancements in device fabrication strategies and the working principles adopted in designing low-voltage organic electrochemical transistors for artificial synapses. First, the fundamental concepts of synaptic behavior, such as synaptic plasticity, and essential prerequisite for artificial synapses to emulate biological synapses are reviewed. Furthermore, an overview of recent developments in organic electrochemical transistors for artificial synapses, their applications, current challenges, and future opportunities are discussed.-
dc.language영어-
dc.language.isoen-
dc.publisherRoyal Society of Chemistry-
dc.titleNeural-inspired artificial synapses based on low-voltage operated organic electrochemical transistors-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Do Hwan-
dc.identifier.doi10.1039/d3tc00752a-
dc.identifier.scopusid2-s2.0-85159350416-
dc.identifier.wosid000985003600001-
dc.identifier.bibliographicCitationJournal of Materials Chemistry C, v.11, no.23, pp.7485 - 7509-
dc.relation.isPartOfJournal of Materials Chemistry C-
dc.citation.titleJournal of Materials Chemistry C-
dc.citation.volume11-
dc.citation.number23-
dc.citation.startPage7485-
dc.citation.endPage7509-
dc.type.rimsART-
dc.type.docTypeArticle in press-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusData handling-
dc.subject.keywordPlusTransistors-
dc.subject.keywordPlusArtificial synapse-
dc.subject.keywordPlusComputing system-
dc.subject.keywordPlusEmerging technologies-
dc.subject.keywordPlusHuman brain-
dc.subject.keywordPlusLow voltages-
dc.subject.keywordPlusNeumann architecture-
dc.subject.keywordPlusOrganic electrochemical transistors-
dc.subject.keywordPlusProcessing speed-
dc.subject.keywordPlusSpeed capability-
dc.subject.keywordPlusStorage capability-
dc.subject.keywordPlusDigital storage-
dc.subject.keywordAuthorSTRETCHABLE CONDUCTORS-
dc.subject.keywordAuthorSYNAPTIC PLASTICITY-
dc.subject.keywordAuthorCHARGE-TRANSPORT-
dc.subject.keywordAuthorMEMRISTOR-
dc.subject.keywordAuthorPOLYMERS-
dc.subject.keywordAuthorDEVICE-
dc.subject.keywordAuthorFILMS-
dc.subject.keywordAuthorGATE-
dc.subject.keywordAuthorMODULATION-
dc.subject.keywordAuthorELECTRODES-
dc.identifier.urlhttps://pubs.rsc.org/en/content/articlelanding/2023/TC/D3TC00752A-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Do Hwan photo

Kim, Do Hwan
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE