Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

DL-MSTO+: A deep learning-based multi-scale topology optimization framework via positive definiteness ensured material representation network

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Minsik-
dc.contributor.authorMin, Seungjae-
dc.date.accessioned2023-11-24T04:56:26Z-
dc.date.available2023-11-24T04:56:26Z-
dc.date.created2023-08-07-
dc.date.issued2023-10-
dc.identifier.issn0045-7825-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/192981-
dc.description.abstractA multi-scale approach to topology optimization has recently emerged due to its lightweight, robust, and multi-functional characteristics. Considering material diversity, an increasing number of materials leads to a computational burden due to numerous design variables and homogenization equations. This study proposes DL-MSTO+, a deep learning-based multi-scale topology optimization framework. The framework consists of two distinct deep neural networks for multi-scale topology optimization problems to reduce the dimensionality of design variables and predict homogenized material properties. First, a generator network learns the low-dimensional representation of a material microstructure in an unsupervised manner. Thus, the trained generator produces a micro-structural image from a low-dimensional vector. Second, a predictor network is trained in a supervised manner to predict the homogenized elasticity matrix for a given micro-structural image. Additionally, the predictor is specifically designed to ensure the positive definiteness of the predicted elasticity matrix. Lastly, the networks are integrated into the algorithm to improve the efficiency of multi-scale topology optimization. The numerical experiments demonstrate higher efficiency for the proposed algorithm than the conventional multi-scale approach. Moreover, the proposed method provides connectable multi-scale designs, and the low-dimensional latent representation enables semantic interpolation between solutions.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleDL-MSTO+: A deep learning-based multi-scale topology optimization framework via positive definiteness ensured material representation network-
dc.typeArticle-
dc.contributor.affiliatedAuthorMin, Seungjae-
dc.identifier.doi10.1016/j.cma.2023.116276-
dc.identifier.scopusid2-s2.0-85166003452-
dc.identifier.wosid001047400300001-
dc.identifier.bibliographicCitationComputer Methods in Applied Mechanics and Engineering, v.415, pp.1 - 39-
dc.relation.isPartOfComputer Methods in Applied Mechanics and Engineering-
dc.citation.titleComputer Methods in Applied Mechanics and Engineering-
dc.citation.volume415-
dc.citation.startPage1-
dc.citation.endPage39-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusHOMOGENIZATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorHomogenization-
dc.subject.keywordAuthorMulti-scale-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorTopology optimization-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0045782523004000?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 미래자동차공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Min, Seung jae photo

Min, Seung jae
COLLEGE OF ENGINEERING (DEPARTMENT OF AUTOMOTIVE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE