Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Directed charge boosting by polyelectrolyte nanorods on a graphene oxide membrane for High-Performance blue energy harvesting

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Ki Hyun-
dc.contributor.authorLee, Hyeonhoo-
dc.contributor.authorJeong, Woojae-
dc.contributor.authorHan, Tae Hee-
dc.date.accessioned2023-11-24T05:12:17Z-
dc.date.available2023-11-24T05:12:17Z-
dc.date.created2023-07-04-
dc.date.issued2023-08-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/193069-
dc.description.abstractBlue energy harvesting is conversion of the Gibbs free energy of mixing due to the salinity gradient between fresh and salt water into electrical energy. Two-dimensional (2D) material-based nanofluidic channels offer unique features and distinct advantages for blue energy harvesting, and they can be prepared via simple fabrication and modification methods. However, because of their lower ion transport selectivity and conductivity than theoretical estimation due to intrinsic and structural defects, 2D nanochannels exhibit low power density and extractable power. In this study, we developed a scalable blade-coating method for the shear-induced alignment of polyelectrolyte nanorods in 2D nanochannels. Based on the increase in the directional charge density via structural modifications, devices had the developed nanochannel structure and achieved a high osmotic power density and energy conversion efficiency of 13.12 W m−2 and 35.64%, respectively. Finally, a hybrid nanofluidic tandem cell was used to operate a handheld electrical device. This study demonstrates the potential of coupling of improved charge density and modified ion pathway in the nanochannel by introducing a charge booster for osmotic energy conversion.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleDirected charge boosting by polyelectrolyte nanorods on a graphene oxide membrane for High-Performance blue energy harvesting-
dc.typeArticle-
dc.contributor.affiliatedAuthorHan, Tae Hee-
dc.identifier.doi10.1016/j.cej.2023.144082-
dc.identifier.scopusid2-s2.0-85162007126-
dc.identifier.wosid001026487800001-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.470, pp.1 - 9-
dc.relation.isPartOfChemical Engineering Journal-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume470-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusSUSTAINABLE POWER-GENERATION-
dc.subject.keywordPlusREVERSE ELECTRODIALYSIS-
dc.subject.keywordPlusCONCENTRATION-GRADIENT-
dc.subject.keywordPlusSALINITY GRADIENT-
dc.subject.keywordPlusION-TRANSPORT-
dc.subject.keywordPlusNANOCHANNELS-
dc.subject.keywordPlusDISPERSION-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusCHANNELS-
dc.subject.keywordAuthorCharge density boosting-
dc.subject.keywordAuthorGraphene oxide-
dc.subject.keywordAuthorNanochannel-
dc.subject.keywordAuthorOsmotic power generation-
dc.subject.keywordAuthorPolyelectrolyte-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1385894723028139?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HAN, TAE HEE photo

HAN, TAE HEE
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE