Detailed Information

Cited 17 time in webofscience Cited 17 time in scopus
Metadata Downloads

Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture

Full metadata record
DC Field Value Language
dc.contributor.authorHiremath, Vishwanath-
dc.contributor.authorShavi, Raghavendra-
dc.contributor.authorSeo, Jeong Gil-
dc.date.accessioned2021-08-02T14:53:07Z-
dc.date.available2021-08-02T14:53:07Z-
dc.date.created2021-05-14-
dc.date.issued2017-07-
dc.identifier.issn0021-9797-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/19547-
dc.description.abstractMagnesium oxide (MgO) is a promising candidate for carbon dioxide (CO2) capture at high temperature applicable to pre-combustion capture in an integrated gasification combined cycle (IGCC) scheme. In this work, mesoporous MgO nanoparticles were synthesized via simple complexation-combustion method by using glycine (G) and urea (U) as fuels (F). The obtained sorbents were thoroughly characterized in terms of the crystalline structure, morphology, nature of the fuel, F/O ratio, and their consequent effects on CO2 sorption. It was observed that due to the complexation followed by combustion in the presence of glycine, MgO with crystallite size as small as similar to 8 nm could be derived. The synthesized MgO nanoparticles exhibited exceptionally high CO2 sorption at elevated temperatures. Furthermore, CO2 sorption isotherms in assistance with FT-IR and DSC experiments demonstrated that the low CO2 uptake at ambient temperature (25-100 degrees C) may be due to the formation of monodentate carbonates, whereas predominant bicarbonates enhance the CO2 uptake at elevated temperatures (100-300 degrees C). MgO-1.5(G) obtained the highest sorption corresponding to 1.34 mmol/g at 200 degrees C.-
dc.language영어-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleMesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeo, Jeong Gil-
dc.identifier.doi10.1016/j.jcis.2017.03.046-
dc.identifier.scopusid2-s2.0-85015410043-
dc.identifier.wosid000399855600006-
dc.identifier.bibliographicCitationJOURNAL OF COLLOID AND INTERFACE SCIENCE, v.498, pp.55 - 63-
dc.relation.isPartOfJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.titleJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.volume498-
dc.citation.startPage55-
dc.citation.endPage63-
dc.type.rimsART-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusCO2 ADSORPTION-
dc.subject.keywordPlusMGO-
dc.subject.keywordPlusFRAMEWORKS-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusSILICA-
dc.subject.keywordAuthorMesoporous sorbents-
dc.subject.keywordAuthorMgO nanoparticles-
dc.subject.keywordAuthorComplexation-combustion-
dc.subject.keywordAuthorElevated temperature CO2 capture-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0021979717302977?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Jeong Gil photo

Seo, Jeong Gil
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE