Detailed Information

Cited 4 time in webofscience Cited 7 time in scopus
Metadata Downloads

Wall-thickness-dependent strength of nanotubular ZnO

Full metadata record
DC Field Value Language
dc.contributor.authorKang, Na-Ri-
dc.contributor.authorKim, Young-Cheon-
dc.contributor.authorJeon, Hansol-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorJang, Jae-il-
dc.contributor.authorHan, Heung Nam-
dc.contributor.authorKim, Ju-Young-
dc.date.accessioned2021-08-02T14:55:36Z-
dc.date.available2021-08-02T14:55:36Z-
dc.date.created2021-05-12-
dc.date.issued2017-06-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/19690-
dc.description.abstractWe fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 μm as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in σ ∝ ρm, where σ is the relative strength and ρ is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleWall-thickness-dependent strength of nanotubular ZnO-
dc.typeArticle-
dc.contributor.affiliatedAuthorJang, Jae-il-
dc.identifier.doi10.1038/s41598-017-04696-4-
dc.identifier.scopusid2-s2.0-85021672025-
dc.identifier.wosid000404268900015-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.7-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusNANOPOROUS GOLD-
dc.subject.keywordPlusELASTIC PROPERTIES-
dc.subject.keywordPlusULTRA-STRONG-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusTENSILE-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusFILMS-
dc.identifier.urlhttps://www.nature.com/articles/s41598-017-04696-4-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Jae Il photo

Jang, Jae Il
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE