Detailed Information

Cited 26 time in webofscience Cited 26 time in scopus
Metadata Downloads

Metal Oleate Induced Etching and Growth of Semiconductor Nanocrystals, Nanorods, and Their Heterostructures

Authors
Oh, NuriShim, Moonsub
Issue Date
Aug-2016
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.138, no.33, pp.10444 - 10451
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume
138
Number
33
Start Page
10444
End Page
10451
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/22240
DOI
10.1021/jacs.6b03834
ISSN
0002-7863
Abstract
Unexpected etching of nanocrystals, nanorods, and their heterostructures by one of the most commonly used metal precursors, metal oleates, is reported. Zn oleate is shown to etch CdS nanorods anisotropically, where the length decreases without a significant change in the diameter. Sodium oleate enhances the etch rate, whereas oleic acid alone does not cause etching, indicating the importance of the countercation on the rate of oleate induced etching. Subsequent addition of Se precursors to the partially etched nanorods in Zn oleate solution can lead to epitaxial growth of CdSe particles rather than the expected ZnSe growth, despite an excess amount of Zn precursors being present. The composition of this epitaxial growth can be varied from CdSe to ZnSe, depending on the amount of excess oleic acid or the reaction temperature. Similar tuning of composition can be observed when starting with collinear CdSe/CdS/CdSe rod/rod/rod heterostructures and spherical CdS (or CdSe/CdS core/shell) nanocrystals. Conversion of collinear rod/rod/rod structures to barbells and interesting rod growth from nearly spherical particles among other structures can also result due to the initial etching effect of metal oleates. These observations have important implications on our understanding of nanocrystal heterostructure synthesis and open up new routes to varying the composition and morphology of these materials.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Nuri photo

Oh, Nuri
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE