Detailed Information

Cited 19 time in webofscience Cited 25 time in scopus
Metadata Downloads

Bio-inspired Hybrid Carbon Nanotube Muscles

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Tae Hyeob-
dc.contributor.authorKwon, Cheong Hoon-
dc.contributor.authorLee, Changsun-
dc.contributor.authorAn, Jieun-
dc.contributor.authorTam Thi Thanh Phuong-
dc.contributor.authorPark, Sun Hwa-
dc.contributor.authorLima, Marcio D.-
dc.contributor.authorBaughman, Ray H.-
dc.contributor.authorKang, Tong Mook-
dc.contributor.authorKIM, SEON JEONG-
dc.date.accessioned2021-08-02T16:53:52Z-
dc.date.available2021-08-02T16:53:52Z-
dc.date.created2021-05-12-
dc.date.issued2016-05-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/23127-
dc.description.abstractThere has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleBio-inspired Hybrid Carbon Nanotube Muscles-
dc.typeArticle-
dc.contributor.affiliatedAuthorKIM, SEON JEONG-
dc.identifier.doi10.1038/srep26687-
dc.identifier.scopusid2-s2.0-84971318161-
dc.identifier.wosid000376498500002-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.6, pp.1 - 8-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume6-
dc.citation.startPage1-
dc.citation.endPage8-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusCELL-BASED ACTUATORS-
dc.subject.keywordPlusSKELETAL-MUSCLE-
dc.subject.keywordPlusMYOBLAST DIFFERENTIATION-
dc.subject.keywordPlusBIOLOGICAL MACHINES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusSTIMULATION-
dc.subject.keywordPlusFABRICATION-
dc.identifier.urlhttps://www.nature.com/articles/srep26687-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seon Jeong photo

Kim, Seon Jeong
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE