Detailed Information

Cited 36 time in webofscience Cited 36 time in scopus
Metadata Downloads

A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode

Full metadata record
DC Field Value Language
dc.contributor.authorArbab, Alvira Ayoub-
dc.contributor.authorSun, Kyung Chul-
dc.contributor.authorSahito, Iftikhar Ali-
dc.contributor.authorQadir, Muhammad Bilal-
dc.contributor.authorChoi, Yun Seon-
dc.contributor.authorJeong, Sung Hoon-
dc.date.accessioned2021-08-02T17:30:16Z-
dc.date.available2021-08-02T17:30:16Z-
dc.date.created2021-05-12-
dc.date.issued2016-03-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/23934-
dc.description.abstractHighly conductive mesoporous carbon structures based on multi walled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon Configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RAT) of 0.60 Omega, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized, features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological, studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleA Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode-
dc.typeArticle-
dc.contributor.affiliatedAuthorJeong, Sung Hoon-
dc.identifier.doi10.1021/acsami.5b09319-
dc.identifier.scopusid2-s2.0-84962081608-
dc.identifier.wosid000372946600082-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.8, no.11, pp.7471 - 7482-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume8-
dc.citation.number11-
dc.citation.startPage7471-
dc.citation.endPage7482-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCOUNTER ELECTRODE-
dc.subject.keywordPlusGEL ELECTROLYTE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusDSSC-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordAuthorcarbon nanotube-
dc.subject.keywordAuthoractivated carbon-
dc.subject.keywordAuthorgel electrolyte-
dc.subject.keywordAuthorelectrocatalytic activity-
dc.subject.keywordAuthordye-sensitized solar cell-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.5b09319-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Sung hoon photo

Jeong, Sung hoon
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE