Detailed Information

Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads

A combined path-percolation - Lattice-Boltzmann model applied to multiphase mass transfer in porous media

Authors
Cekmer, OzgurUm, SukkeeMench, Matthew M.
Issue Date
Feb-2016
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Lattice-Boltzmann model; Path-percolation theory; Porous media; Multiphase flow; OpenMP; Statistical
Citation
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.93, pp.257 - 272
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume
93
Start Page
257
End Page
272
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/23983
DOI
10.1016/j.ijheatmasstransfer.2015.09.012
ISSN
0017-9310
Abstract
In this work, single-component single-phase, and single-component multi-phase Lattice-Boltzmann models were developed to investigate the effects of liquid formation on mass transfer in porous channels via path-percolation theory. A two-dimensional lattice with nine velocity components was used in both Lattice-Boltzmann models. A confidence level of 99% was utilized to obtain statistical results of porosity, effective porosity, and tortuosity of the system with 0%, 10%, and 20% liquid formation. Velocity distributions in randomly generated inhomogeneous porous channels with different solid-liquid-vapor combinations were analyzed. The statistical results show that the porosity range of the initially generated porous media lies between the specified error limit of 0.001 determined by the confidence level study for all three cases with 70%, 80%, and 90% target porosity. When target porosity decreases, the difference between porosity and effective porosity increases, and the effective porosity range gets wider than the range of porosity. Effective diffusion coefficient decreases with increase in liquid formation, since the effective porosity decreases. An application programming interface called OpenMP was implemented on the developed serial in-house program and the effects of 1-4 threads on program performance and efficiency were investigated. The maximum speedup and performance gained are 33553 and 1.275 GFlops for 4 threads of a personal computer with a 38.4 GFlops peak performance.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher UM, Suk kee photo

UM, Suk kee
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE