Detailed Information

Cited 88 time in webofscience Cited 89 time in scopus
Metadata Downloads

Catalytic Behavior of Lithium Nitrate in Li-O-2 Cells

Full metadata record
DC Field Value Language
dc.contributor.authorSharon, Daniel-
dc.contributor.authorHirsberg, Daniel-
dc.contributor.authorAfri, Michal-
dc.contributor.authorChesneau, Frederick-
dc.contributor.authorLavi, Ronit-
dc.contributor.authorFrimer, Aryeh A.-
dc.contributor.authorSun, Yang Kook-
dc.contributor.authorAurbach, Doron-
dc.date.accessioned2021-08-02T17:55:07Z-
dc.date.available2021-08-02T17:55:07Z-
dc.date.created2021-05-12-
dc.date.issued2015-08-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/24915-
dc.description.abstractThe development of a successful Li-O-2 battery depends to a large extent on the discovery of electrolyte solutions that remain chemically stable through the reduction and oxidation reactions that occur during cell operations. The influence of the electrolyte anions on the behavior of Li-O-2 cells was thought to be negligible. However, it has recently been suggested that specific anions can have a dramatic effect on the chemistry of a Li-O-2 cell. In the present paper, we describe how LiNO3 in polyether solvents can improve both oxygen reduction (ORR) and oxygen evolution (OER) reactions. In particular, the nitrate anion can enhance the ORR by enabling a mechanism that involves solubilized species like superoxide radicals, which allows for the formation of submicronic Li2O2 particles. Such phenomena were also observed in Li-O-2 cells with high donor number solvents, such as dimethyl sulfoxide dimethylformamide (DMF) and dimethylacetamide (DMA). Nevertheless, their instability toward oxygen reduction, lithium metals, and high oxidation potentials renders them less suitable than polyether solvents. In turn, using catalysts like LiI to reduce the OER overpotential might enhance parasitic reactions. We show herein that LiNO3 can serve as an electrolyte and useful redox mediator. NO2 ions are formed by the reduction of nitrate ions on the anode. Their oxidation forms NO2, which readily oxidizes to Li2O2. The latter process moves the OER overpotentials down into a potential window suitable for polyether solvent-based cells. Advanced analytical tools, including in situ electrochemical quartz microbalance (EQCM) and ESR plus XPS, HR-SEM, and impedance spectroscopy, were used for the studies reported herein.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleCatalytic Behavior of Lithium Nitrate in Li-O-2 Cells-
dc.typeArticle-
dc.contributor.affiliatedAuthorSun, Yang Kook-
dc.identifier.doi10.1021/acsami.5b04145-
dc.identifier.scopusid2-s2.0-84938629662-
dc.identifier.wosid000359279800055-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.7, no.30, pp.16590 - 16600-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume7-
dc.citation.number30-
dc.citation.startPage16590-
dc.citation.endPage16600-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSOLVENT STABILITY-
dc.subject.keywordPlusIONIC ASSOCIATION-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusBATTERY-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusLI2O2-
dc.subject.keywordPlusRECHARGEABILITY-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusLINO3-
dc.subject.keywordAuthorLi-O-2 batteries-
dc.subject.keywordAuthoroxygen reduction reactions-
dc.subject.keywordAuthoroxygen evolution reactions-
dc.subject.keywordAuthorelectrocatalysis-
dc.subject.keywordAuthorredox mediators-
dc.subject.keywordAuthorcarbon cathodes-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.5b04145-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Yang Kook photo

Sun, Yang Kook
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE