Detailed Information

Cited 93 time in webofscience Cited 89 time in scopus
Metadata Downloads

Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk

Full metadata record
DC Field Value Language
dc.contributor.authorChun, Kyoung-Yong-
dc.contributor.authorKim, Shi Hyeong-
dc.contributor.authorShin, Min Kyoon-
dc.contributor.authorKwon, Cheong Hoon-
dc.contributor.authorPark, Jihwang-
dc.contributor.authorKim, Youn Tae-
dc.contributor.authorSpinks, Geoffrey M.-
dc.contributor.authorLima, Marcio D.-
dc.contributor.authorHaines, Carter S.-
dc.contributor.authorBaughman, Ray H.-
dc.contributor.authorKim, Seon Jeong-
dc.date.accessioned2021-08-02T18:52:23Z-
dc.date.available2021-08-02T18:52:23Z-
dc.date.created2021-05-12-
dc.date.issued2014-02-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/26552-
dc.description.abstractTorsional artificial muscles generating fast, large-angle rotation have been recently demonstrated, which exploit the helical configuration of twist-spun carbon nanotube yarns. These wax-infiltrated, electrothermally powered artificial muscles are torsionally underdamped, thereby experiencing dynamic oscillations that complicate positional control. Here, using the strategy spiders deploy to eliminate uncontrolled spinning at the end of dragline silk, we have developed ultrafast hybrid carbon nanotube yarn muscles that generated a 9,800 r.p.m. rotation without noticeable oscillation. A high-loss viscoelastic material, comprising paraffin wax and polystyrene-poly(ethylene-butylene)-polystyrene copolymer, was used as yarn guest to give an overdamped dynamic response. Using more than 10-fold decrease in mechanical stabilization time, compared with previous nanotube yarn torsional muscles, dynamic mirror positioning that is both fast and accurate is demonstrated. Scalability to provide constant volumetric torsional work capacity is demonstrated over a 10-fold change in yarn cross-sectional area, which is important for upscaled applications.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleHybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Seon Jeong-
dc.identifier.doi10.1038/ncomms4322-
dc.identifier.scopusid2-s2.0-84900469296-
dc.identifier.wosid000332668300015-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.5, pp.1 - 9-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume5-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusSHAPE-MEMORY-
dc.identifier.urlhttps://www.nature.com/articles/ncomms4322-
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 생체공학전공 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seon Jeong photo

Kim, Seon Jeong
COLLEGE OF ENGINEERING (서울 바이오메디컬공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE