Detailed Information

Cited 67 time in webofscience Cited 64 time in scopus
Metadata Downloads

Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications

Full metadata record
DC Field Value Language
dc.contributor.authorSalunkhe, Rahul R.-
dc.contributor.authorJang, Kihun-
dc.contributor.authorLee, Sung-won-
dc.contributor.authorYu, Seongil-
dc.contributor.authorAhn, Heejoon-
dc.date.accessioned2021-08-02T19:27:23Z-
dc.date.available2021-08-02T19:27:23Z-
dc.date.created2021-05-12-
dc.date.issued2012-10-
dc.identifier.issn0959-9428-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/27465-
dc.description.abstractCarbon nanotube and metal oxide/hydroxide hybrids have attracted much interest as electrode materials for electrochemical supercapacitors because of their dual storage mechanism. They can complement or replace batteries in electrical energy storage and harvesting applications, where high power delivery or uptake is needed. Multi-walled carbon nanotube (MWCNT) and nickel-cobalt binary metal hydroxide nanorod hybrids have been developed through the chemical synthesis of binary metal hydroxide on a MWCNT surface. These hybrids show enhanced supercapacitive performance and cycling ability. Growth of a thin film consisting of a coating of binary metal hydroxide, as well as further growth of nanorod structures, is demonstrated using FESEM and TEM, showing that this film is a promising structure for supercapacitor applications. These electrodes yield a significantly high capacitance of 502 F g(-1) with a high energy density of 69 W h kg(-1) at a scan rate of 5 mV s(-1). The film is stable up to 5000 cycles with greater than 80% capacitance retention.-
dc.language영어-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleBinary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications-
dc.typeArticle-
dc.contributor.affiliatedAuthorAhn, Heejoon-
dc.identifier.doi10.1039/c2jm32638h-
dc.identifier.scopusid2-s2.0-84867022323-
dc.identifier.wosid000309852400040-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY, v.22, no.40, pp.21630 - 21635-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY-
dc.citation.volume22-
dc.citation.number40-
dc.citation.startPage21630-
dc.citation.endPage21635-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry-
dc.relation.journalWebOfScienceCategoryPhysical-
dc.relation.journalWebOfScienceCategoryMaterials Science-
dc.relation.journalWebOfScienceCategoryMultidisciplinary-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusCHEMICAL-SYNTHESIS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusSUPERCAPACITOR-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusNICO2O4-
Files in This Item
There are no files associated with this item.
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Heejoon photo

Ahn, Heejoon
COLLEGE OF ENGINEERING (DEPARTMENT OF ORGANIC AND NANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE