Detailed Information

Cited 9 time in webofscience Cited 10 time in scopus
Metadata Downloads

Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode

Full metadata record
DC Field Value Language
dc.contributor.authorRiaz, Rabia-
dc.contributor.authorAli, Mumtaz-
dc.contributor.authorAnwer, Hassan-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorJeong, Sung Hoon-
dc.date.accessioned2021-07-30T05:05:35Z-
dc.date.available2021-07-30T05:05:35Z-
dc.date.created2021-05-12-
dc.date.issued2019-12-
dc.identifier.issn0021-9797-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/2856-
dc.description.abstractNitrogen-doped graphene quantum dots (NGQDs) are a diverse organic catalyst, competitive with other metallic catalysts due to their low cost, high stability, biocompatibility, and eco-friendliness. Highly functional multi-edge surfaces of NGQDs play a key role in imparting superb photocatalytic and electrocatalytic activity. However, when coating NGQDs by conventional techniques, such surfaces are not exposed for catalysis, due to the unwanted overlap of NGQDs sheets. To avoid this issue, here we propose a facile technique to orient NGQDs in a three-dimensional (3D) self-assembled foam-like structure, over reduced graphene oxide coated woven carbon fabric. This 3D assembled structure provides highly exposed active surfaces, which are readily available for catalytic reactions: however, in the conventional uniformly coated NGQDs layer, catalytic activity was limited by complex diffusion. The superb catalytic activity of the assembled NGQDs was utilized for the degradation of organic pollutant (methylene blue dye) from water. Additionally, the proposed electrode revealed much higher electrocatalytic activity than the rare Pt catalyst, owing to the easy diffusion of electrolyte and fast quenching of charges through the porous structure. The assembled NGQDs showed 50% higher photocatalytic degradation compared to uniformly coated NGQDs, which was further accelerated (50%) by application of the biased potential of 2 V; i.e. photo-electrocatalysis. The novel photo-electrocatalytic electrode offers high conductivity, stability, and flexibility, which make this complete carbon electrode highly attractive for other catalytic applications such as fuel cells, supercapacitors, and water splitting.-
dc.language영어-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleHighly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, Min Jae-
dc.contributor.affiliatedAuthorJeong, Sung Hoon-
dc.identifier.doi10.1016/j.jcis.2019.09.028-
dc.identifier.scopusid2-s2.0-85072040548-
dc.identifier.wosid000494056200019-
dc.identifier.bibliographicCitationJOURNAL OF COLLOID AND INTERFACE SCIENCE, v.557, pp.174 - 184-
dc.relation.isPartOfJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.titleJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.volume557-
dc.citation.startPage174-
dc.citation.endPage184-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusCARBON DOTS-
dc.subject.keywordPlusFLUORESCENCE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusPHOTOCATALYST-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSULFUR-
dc.subject.keywordPlusYIELD-
dc.subject.keywordPlusSTATE-
dc.subject.keywordAuthorThree-dimensional self-assembly-
dc.subject.keywordAuthorNitrogen-doped graphene quantum dots-
dc.subject.keywordAuthorReduced graphene oxide-
dc.subject.keywordAuthorStable electrode-
dc.subject.keywordAuthorPhoto-electrocatalysis-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0021979719310598?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 유기나노공학과 > 1. Journal Articles
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ko, Min Jae photo

Ko, Min Jae
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE