Detailed Information

Cited 5 time in webofscience Cited 7 time in scopus
Metadata Downloads

Sub-5 nm Graphene Oxide Nanofilm with Exceptionally High H+/V Selectivity for Vanadium Redox Flow Battery

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Seul Chan-
dc.contributor.authorLee, Tae Hoon-
dc.contributor.authorMoon, Gi Hyeon-
dc.contributor.authorKim, Byung Su-
dc.contributor.authorRoh, Jong Min-
dc.contributor.authorCho, Young Hoon-
dc.contributor.authorKim, Hyo Won-
dc.contributor.authorJang, Jaeyoung-
dc.contributor.authorPark, Ho Bum-
dc.contributor.authorKang, Yong Soo-
dc.date.accessioned2021-07-30T05:05:42Z-
dc.date.available2021-07-30T05:05:42Z-
dc.date.created2021-05-12-
dc.date.issued2019-07-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/2889-
dc.description.abstractHighly H+/V selective membranes are desired in high-performance vanadium redox flow batteries (VFRBs) to overcome the crossover phenomena of vanadium species. Herein, we demonstrate the molecular-sieving nanochannels (similar to 0.84 nm) inside a graphene oxide (GO) laminate efficiently blocked the transport of vanadium ions, while allowing the transport of Fit Furthermore, an ultrathin (sub-5 nm) and highly selective GO nanofilm was successfully coated on a porous substrate to improve the H+ flux using a facile spin-coating method. The GO-coated thin-film composite (TFC) membrane showed much higher H+ flux with an exceptionally high H+/V selectivity (H+ permeation rate/VO2+ permeation rate, up to 850) due to the molecular-sieving nanochannels inside the GO nanofilm, leading to a much more enhanced VRFB performance in terms of energy efficiency (EE, 84.7%) compared to the benchmark Nafion membrane (EE, 69.2%), at 20 mA cm(-2).-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleSub-5 nm Graphene Oxide Nanofilm with Exceptionally High H+/V Selectivity for Vanadium Redox Flow Battery-
dc.typeArticle-
dc.contributor.affiliatedAuthorJang, Jaeyoung-
dc.contributor.affiliatedAuthorPark, Ho Bum-
dc.identifier.doi10.1021/acsaem.9b00474-
dc.identifier.scopusid2-s2.0-85068154898-
dc.identifier.wosid000477074700004-
dc.identifier.bibliographicCitationACS APPLIED ENERGY MATERIALS, v.2, no.7, pp.4590 - 4596-
dc.relation.isPartOfACS APPLIED ENERGY MATERIALS-
dc.citation.titleACS APPLIED ENERGY MATERIALS-
dc.citation.volume2-
dc.citation.number7-
dc.citation.startPage4590-
dc.citation.endPage4596-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusMULTILAYER-
dc.subject.keywordAuthorGraphene oxide membrane-
dc.subject.keywordAuthormolecular-sieving nanochannel-
dc.subject.keywordAuthorkinetic desorption method-
dc.subject.keywordAuthorthin film composite membrane-
dc.subject.keywordAuthorvanadium redox flow battery-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsaem.9b00474-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Jae young photo

Jang, Jae young
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE