Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Ultralow Voltage Driving Circuits Based on Coplanar a-InGaZnO TFTs with Photopatternable Ionic Polymer Gate Dielectric

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dayoon-
dc.contributor.authorKim, Yongchan-
dc.contributor.authorKim, So Young-
dc.contributor.authorKim, Do Hwan-
dc.contributor.authorLee, Hojin-
dc.date.accessioned2021-08-03T02:55:55Z-
dc.date.available2021-08-03T02:55:55Z-
dc.date.created2021-05-12-
dc.date.issued2019-10-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/32815-
dc.description.abstractCoplanar amorphous indium gallium zinc oxide (a-InGaZnO) thin film transistors (TFTs) with photopatternable ionic polymer gate dielectrics are fabricated and their inverter/shift register circuits are demonstrated. As a gate dielectric, ionic-polyurethane acrylate (i-PUA) can be patterned as small as 20 mu m through conventional photolithography to achieve superior electrical properties at low operating voltages by the electric double layer formation, inducing ultrahigh channel capacitance. The fabricated solution-processed a-InGaZnO TFT with the i-PUA gate dielectric shows excellent electrical characteristics such as a field-effect mobility of 11.6 cm(2) V-1 s(-1), on-off ratio exceeding 10(7), and low threshold voltage of 0.3 V. It is also confirmed that the inverter and shift register can be fabricated based on the proposed coplanar a-InGaZnO TFTs and are successfully functional even at 60 Hz operating frequency with driving voltage levels below 3 V.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-
dc.titleUltralow Voltage Driving Circuits Based on Coplanar a-InGaZnO TFTs with Photopatternable Ionic Polymer Gate Dielectric-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Do Hwan-
dc.identifier.doi10.1002/aelm.201900359-
dc.identifier.scopusid2-s2.0-85069851343-
dc.identifier.wosid000477519400001-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.5, no.10, pp.1 - 7-
dc.relation.isPartOfADVANCED ELECTRONIC MATERIALS-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume5-
dc.citation.number10-
dc.citation.startPage1-
dc.citation.endPage7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusCONTACT RESISTANCE-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusPASSIVATION-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusDRIVER-
dc.subject.keywordAuthorcoplanar structures-
dc.subject.keywordAuthorelectric double layer-
dc.subject.keywordAuthorionic polymer gate dielectric-
dc.subject.keywordAuthorsolution-processed a-InGaZnO-
dc.subject.keywordAuthorthin film transistors-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/aelm.201900359-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Do Hwan photo

Kim, Do Hwan
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE