Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of the thermal performance model using temperature gradient analysis for optimized design of steam surface condenser

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Doyoung-
dc.contributor.authorJeon, Joongoo-
dc.contributor.authorKim, Taeseok-
dc.contributor.authorPark, Jae Hyung-
dc.contributor.authorKim, Sung Joong-
dc.date.accessioned2021-08-02T08:28:23Z-
dc.date.available2021-08-02T08:28:23Z-
dc.date.created2021-05-12-
dc.date.issued2020-12-
dc.identifier.issn0017-9310-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/8147-
dc.description.abstractThis paper presents a new method of evaluating the thermal performance of a steam condenser based on the temperature gradient between steam and cooling water. With reference to the experimental results, the pressure transition temperature (PIT), defined as the limiting cooling water temperature initiating insufficient heat removal over the applied heat load, was identified. An analytical methodology was developed to estimate the PIT for given geometrical and thermal-hydraulic conditions of the condenser system. The methodology was extended to a temperature gradient analysis (TGA) model for the performance evaluation of power plant-scale condensers by considering the effects of condensate inundation, tube loading pattern, steam shear, and fouling resistance. The assessment results of the TGA model showed good agreement with existing numerical and lumped-volume models, as well as measurement data of existing power-plant condenser systems. Its simplicity and strong capability to elucidate most of the design variables of the condenser make the TGA model suitable for executing many iterative calculations required when designing and optimizing the new condenser system.-
dc.language영어-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleDevelopment of the thermal performance model using temperature gradient analysis for optimized design of steam surface condenser-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sung Joong-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2020.120411-
dc.identifier.scopusid2-s2.0-85090744282-
dc.identifier.wosid000589421900024-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.163, pp.1 - 19-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.citation.titleINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.citation.volume163-
dc.citation.startPage1-
dc.citation.endPage19-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusCOOLING WATER TEMPERATURE-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusFLOW-
dc.subject.keywordAuthorSteam surface condenser-
dc.subject.keywordAuthorPerformance model-
dc.subject.keywordAuthorPressure transition temperature-
dc.subject.keywordAuthorTemperature gradient analysis-
dc.subject.keywordAuthorDesign optimization-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0017931020333470?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sung Joong photo

Kim, Sung Joong
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE