Detailed Information

Cited 24 time in webofscience Cited 29 time in scopus
Metadata Downloads

Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Un-Hyuck-
dc.contributor.authorPark, Geon-Tae-
dc.contributor.authorSon, Byoung-Ki-
dc.contributor.authorNam, Gyeong Won-
dc.contributor.authorLiu, Jun-
dc.contributor.authorKuo, Liang-Yin-
dc.contributor.authorKaghazchi, Payam-
dc.contributor.authorYoon, Chong S.-
dc.contributor.authorSun, Yang-Kook-
dc.date.accessioned2021-08-02T08:50:49Z-
dc.date.available2021-08-02T08:50:49Z-
dc.date.created2021-05-12-
dc.date.issued2020-11-
dc.identifier.issn2058-7546-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/8803-
dc.description.abstractThe demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE RESEARCH-
dc.titleHeuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Chong S.-
dc.contributor.affiliatedAuthorSun, Yang-Kook-
dc.identifier.doi10.1038/s41560-020-00693-6-
dc.identifier.scopusid2-s2.0-85091253707-
dc.identifier.wosid000571739400005-
dc.identifier.bibliographicCitationNATURE ENERGY, v.5, no.11, pp.860 - 869-
dc.relation.isPartOfNATURE ENERGY-
dc.citation.titleNATURE ENERGY-
dc.citation.volume5-
dc.citation.number11-
dc.citation.startPage860-
dc.citation.endPage869-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusNCA CATHODE-
dc.subject.keywordPlusGENERATION-
dc.identifier.urlhttps://www.nature.com/articles/s41560-020-00693-6-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Chong Seung photo

Yoon, Chong Seung
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE