Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Proton-beam engineered surface-point defects for highly sensitive and reliable NO2 sensing under humid environments

Full metadata record
DC Field Value Language
dc.contributor.authorBang, Jae Hoon-
dc.contributor.authorKwon, Yong Jung-
dc.contributor.authorLee, Jung-Hoon-
dc.contributor.authorMirzaei, Ali-
dc.contributor.authorLee, Ha Young-
dc.contributor.authorChoi, Hyeunseok-
dc.contributor.authorKim, Sang Sub-
dc.contributor.authorJeong, Young Kyu-
dc.contributor.authorKim, Hyoun Woo-
dc.date.accessioned2021-07-30T04:42:53Z-
dc.date.available2021-07-30T04:42:53Z-
dc.date.created2021-07-14-
dc.date.issued2021-08-
dc.identifier.issn0304-3894-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/952-
dc.description.abstractCross-interference with humidity is a major limiting factor for the accurate detection of target gases in semiconductor metal-oxide gas sensors. Under humid conditions, the surface-active sites of metal oxides for gas adsorption are easily deactivated by atmospheric water molecules. Thus, development of a new approach that can simultaneously improve the two inversely related features for realizing practical gas sensors is necessary. This paper presents a facile method to engineer surface-point defects based on proton-beam irradiation. The sensor irradiated with a proton beam shows not only an improved NO2 response but also considerable tolerance toward humidity. Based on surface analyses and DFT calculations, it is found that proton beams induce three types of point defects, which make NO2 molecules preferentially adsorb on the ZnO surfaces compared to H2O molecules, eventually enabling improved NO2 detection with less humidity interference. © 2021 Elsevier B.V.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleProton-beam engineered surface-point defects for highly sensitive and reliable NO2 sensing under humid environments-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Hyoun Woo-
dc.identifier.doi10.1016/j.jhazmat.2021.125841-
dc.identifier.scopusid2-s2.0-85105577792-
dc.identifier.wosid000664794800007-
dc.identifier.bibliographicCitationJournal of Hazardous Materials, v.416, pp.1 - 11-
dc.relation.isPartOfJournal of Hazardous Materials-
dc.citation.titleJournal of Hazardous Materials-
dc.citation.volume416-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineeringEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusZNO NANORODSGAS SENSOROXYGENVACANCIESNANOCOMPOSITESIRRADIATIONABSORPTIONNANOWIRE-
dc.subject.keywordAuthorZnOGas sensorProton-beam irradiationPoint defects-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0304389421008050?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyoun Woo photo

Kim, Hyoun Woo
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE