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Abstract: The authors have recently investigated a type of Hyers–Ulam stability of one-dimensional
time-independent Schrödinger equation with a symmetric parabolic potential wall. In this paper, we
investigate a type of Hyers–Ulam stability of the Schrödinger equation with a near-hyperbolic potential.
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1. Introduction

About 80 years ago, Ulam [1] proposed the following general stability problem con-
cerning functional equations: Assume that we changed the mathematical equation to an
inequality in some way. In this case, is there a solution to the equation near each solution to
the inequality?

In 1941, Hyers [2] partially solved Ulam’s question for the approximately additive
functions, assuming that G1 and G2 are Banach spaces. Indeed, he proved that each solution
to the inequality ‖ f (x + y)− f (x)− f (y)‖ ≤ ε (for all x and y) can be approximated by
an exact solution, i.e., by an additive function. In that case, the Cauchy additive equation,
f (x + y) = f (x) + f (y), is said to have (or satisfy) the Hyers–Ulam stability.

Meanwhile, Rassias [3], trying not to strongly limit the Cauchy difference, attempted
to weaken the condition for the Cauchy difference as follows:

‖ f (x + y)− f (x)− f (y)‖ ≤ ε
(
‖x‖p + ‖y‖p),

where p is a fixed real number with p < 1, and he proved the theorem of Hyers. That is,
he proved the Hyers–Ulam-Rassias stability (or generalized Hyers–Ulam stability) of the
Cauchy additive functional equation. Since then, Găvruţa [4] has published a paper that
further expands the theorem of Rassias, both of which have been interesting enough to
attract the attention of many mathematicians (see [5]).

Now we assume that I = (a, b) is an open interval with −∞ ≤ a < b ≤ +∞ and n is a
fixed positive integer. We consider the linear differential equation of nth order

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x) = g(x), (1)

where y : I → C is an n times continuously differentiable function, a0, . . . , an : I → C are
given continuous functions, and g : I → C is also a given continuous function.

In general, we say that the differential Equation (1) has the Hyers–Ulam stability if
the following statement is true for all ε > 0: For any n times continuously differentiable
(known) function y : I → C that satisfies the inequality∣∣∣an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)− g(x)

∣∣∣ ≤ ε
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for all x ∈ I, there is a solution y0 : I → C of differential Equation (1) that satisfies

|y(x)− y0(x)| ≤ K(x, ε)

for each x ∈ I, where K(x, ε) depends only on x and ε and lim
ε→0

K(x, ε) = 0 for any fixed x.

If K(x, ε) really depends on the value of x, then in a broad sense (but not in its strict
sense) this case seems somewhat suitable for Hyers–Ulam-Rassias stability. Since there is
not yet an appropriate formal term for this case, in this paper we try to say that differential
Equation (1) has a type of Hyers–Ulam stability. For a more detailed definition of Hyers–
Ulam stability, see [5].

Obłoza is generally credited for being the first mathematician to study the Hyers–Ulam
stability of differential equations (see [6,7]). Indeed, Obłoza perfectly demonstrated the
Hyers–Ulam stability of linear differential equations of the form

y′(x) + f (x)y(x) = g(x). (2)

Since then, many mathematicians have dealt with this topic more broadly and in depth
(see [8–13]).

In a recent paper [14], the authors investigated a type of Hyers–Ulam stability for the
one-dimensional time-independent Schrödinger equation

− h̄2

2m
ψ′′(x) + V(x)ψ(x) = Eψ(x) (3)

when the system under observation has a symmetric parabolic potential wall.
In this paper, we prove a type of Hyers–Ulam stability of one-dimensional time-

independent Schrödinger Equation (3) with a near-hyperbolic potential, where ψ : (0, ∞)→ C
is the wave function, V is a hyperbolic potential function, h̄ is the reduced Planck constant,
m is the mass of the particle, and E is the energy of the particle.

2. A Type of Hyers–Ulam Stability

In the following lemma, let I = (a, b) be an open interval, where −∞ ≤ a < b ≤ +∞,
and let X be a Banach space over K, where K denotes either R or C.

Lemma 1 ([11]). Assume that y : I → X is a continuously differentiable function and λ : I → K,
and f : I → X, ϕ : I → [0, ∞) are continuous functions. If y satisfies the inequality

‖y′(x)− λ(x)y(x)− f (x)‖ ≤ ϕ(x)

for all x ∈ I, then there exists a unique continuously differentiable function z : I → X such that

z′(x)− λ(x)z(x) = f (x)

and

‖y(x)− z(x)‖ ≤ exp
(
<
(∫ x

a
λ(s)ds

))∣∣∣∣∫ x

a
exp

(
−<

(∫ t

a
λ(s)ds

))
ϕ(t)dt

∣∣∣∣
for all x ∈ I.

From now on, let c and k be fixed positive real numbers. We assume that the potential
functions V1 : (0, c)→ R and V2 : (c, ∞)→ R are given by

V1(x) :=
k
c2 x− 2k

c
and V2(x) := − k

x
. (4)

Roughly speaking, our potential function is near-hyperbolic (see Figure 1).
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Figure 1. Near-hyperbolic potential function.

In the following theorem, we exclude the point c from each of the domains of V1, ψ1,
ξ1, y1, and φ1 to avoid trivially repeated calculations. We note that the following theorem is
true whether or not we include the point c in their respective domains.

Theorem 1. Assume that the potential functions V1 : (0, c)→ R and V2 : (c, ∞)→ R are given
by (4). Let E be the energy of the particle under observation and let ε be any fixed positive real
number. If twice continuously differentiable functions ψ1 : (0, c)→ C and ψ2 : (c, ∞)→ C satisfy
the inequality ∣∣∣∣∣− h̄2

2m
ψ′′i (x) + Vi(x)ψi(x)− Eψi(x)

∣∣∣∣∣ ≤ ε (5)

for all 0 < x < c (when i = 1) and x > c (when i = 2), then there exist twice continuously
differentiable solutions ξ1 : (0, c) → C and ξ2 : (c, ∞) → C to the one-dimensional time-
independent Schrödinger Equation (3) such that

|ψi(x)− ξi(x)| ≤ 2m
h̄2 ε

∫ x

α

∫ t

α

∣∣∣∣yi(s)
yi(t)

∣∣∣∣dsdt (6)

for all 0 < x < c (when i = 1) and x > c (when i = 2), where y1 : (0, c) → C and
y2 : (c, ∞)→ C are solutions to the second-order linear differential Equations in (10), respectively,
and where α = 0 for i = 1 and α = c for i = 2.

Proof. Given an open subset D of R, we use C1(D) (C2(D)) to denote the class of all (twice)
continuously differentiable complex-valued functions defined on D. Considering the given
potential functions V1 : (0, c)→ R and V2 : (c, ∞)→ R, we define the differential operators
La,Lb : C2(0, c)→ C1(0, c) for i = 1 and La,Lb : C2(c, ∞)→ C1(c, ∞) for i = 2 as follows:

(Laψi)(x) := ψ′i(x) + a(x)ψi(x) and (Lbψi)(x) := ψ′i(x) + b(x)ψi(x) (7)

for all twice continuously differentiable functions ψ1 : (0, c) → C and ψ2 : (c, ∞) → C,
where a, b : (0, ∞)→ C are not known yet but they are continuously differentiable functions
to be determined later. Then, it follows from (7) that

− h̄2

2m
((Lb ◦ La)ψi)(x) = − h̄2

2m
(
ψ′′i (x) +

(
a(x) + b(x)

)
ψ′i(x) +

(
a′(x) + a(x)b(x)

)
ψi(x)

)
for all 0 < x < c (when i = 1) and x > c (when i = 2).
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If we assume that

− h̄2

2m
((Lb ◦ La)ψi)(x) = − h̄2

2m
ψ′′i (x) + Vi(x)ψi(x)− Eψi(x) (8)

for all 0 < x < c (when i = 1) and x > c (when i = 2), then

b(x) = −a(x) and a′(x) + a(x)b(x) = −2m
h̄2

(
Vi(x)− E

)
for all x > 0. That is, a(x) is a solution to the Riccati equation

a′(x)− a(x)2 = −2m
h̄2

(
Vi(x)− E

)
(9)

for all 0 < x < c (when i = 1) and x > c (when i = 2).
If we set a(x) := − y′i(x)

yi(x) in the last equation, where the subindex i = 1 for 0 < x < c
and i = 2 for x > c, it then follows from (4) that

y′′1 (x)− 2m
h̄2

(
k
c2 x− 2k

c
− E

)
y1(x) = 0 (for 0 < x < c),

y′′2 (x) +
2m
h̄2

(
k
x
+ E

)
y2(x) = 0 (for x > c).

(10)

Since every coefficient of each differential equation in (10) is continuous on the domain
where the corresponding equation is defined, we confirm that the functions y1 : (0, c)→ C
and y2 : (c, ∞)→ C exist.

Due to (5) and (8), we get∣∣∣∣∣− h̄2

2m
((Lb ◦ La)ψi)(x)

∣∣∣∣∣ =
∣∣∣∣∣− h̄2

2m
ψ′′i (x) + Vi(x)ψi(x)− Eψi(x)

∣∣∣∣∣ ≤ ε,

i.e.,

|((Lb ◦ La)ψi)(x)| ≤ 2m
h̄2 ε (11)

for all 0 < x < c (when i = 1) and x > c (when i = 2). If we set

ϕi(x) := (Laψi)(x) = ψ′i(x) + a(x)ψi(x) = ψ′i(x)−
y′i(x)
yi(x)

ψi(x),

then it follows from (7) and (11) that∣∣∣∣ϕ′i(x) +
y′i(x)
yi(x)

ϕi(x)
∣∣∣∣ = ∣∣ϕ′i(x)− a(x)ϕi(x)

∣∣ = |(Lb ϕi)(x)| ≤ 2m
h̄2 ε

for all 0 < x < c (when i = 1) and x > c (when i = 2).
According to Lemma 1, there exists a unique function φi(x) that satisfies

φ′i(x) +
y′i(x)
yi(x)

φi(x) = 0 (12)

and

|ϕi(x)− φi(x)| ≤ 2m
h̄2 ε exp

(
−<

(∫ x

α

y′i(s)
yi(s)

ds
)) ∫ x

α
exp

(
<
(∫ t

α

y′i(s)
yi(s)

ds
))

dt

≤ 2m
h̄2 ε

∫ x

α

∣∣∣∣ yi(t)
yi(x)

∣∣∣∣dt
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for all 0 < x < c (when i = 1) and x > c (when i = 2), where we set α = 0 for i = 1 and
α = c for i = 2. That is, we get the following inequality∣∣∣∣ψ′i(x)−

y′i(x)
yi(x)

ψi(x)− φi(x)
∣∣∣∣ = ∣∣ψ′i(x) + a(x)ψi(x)− φi(x)

∣∣ = |ϕi(x)− φi(x)|

≤ 2m
h̄2 ε

∫ x

α

∣∣∣∣ yi(t)
yi(x)

∣∣∣∣dt
(13)

for all 0 < x < c (when i = 1) and x > c (when i = 2).
Due to Lemma 1 again, it follows from (13) that there exists a unique function ξi(x)

that satisfies

ξ ′i(x)−
y′i(x)
yi(x)

ξi(x) = φi(x) (14)

and

|ψi(x)− ξi(x)| ≤ exp
(
<
(∫ x

α

y′i(s)
yi(s)

ds
)) ∫ x

α
exp

(
−<

(∫ t

α

y′i(s)
yi(s)

ds
))

2m
h̄2 ε

∫ t

α

∣∣∣∣ yi(s)
yi(x)

∣∣∣∣dsdt

≤ 2m
h̄2 ε

∫ x

α

∫ t

α

∣∣∣∣yi(s)
yi(t)

∣∣∣∣dsdt

for all 0 < x < c (when i = 1) and x > c (when i = 2).
Combining (12) and (14), we see that

ξ ′′i (x)−
y′′i (x)
yi(x)

ξi(x) = φ′i(x) +
y′i(x)
yi(x)

φi(x) = 0, (15)

and since a(x) = − y′i(x)
yi(x) , it follows from (9) that − y′′i (x)

yi(x) = a′(x)− a(x)2 = − 2m
h̄2 (Vi(x)− E).

Hence, by (15), we have

ξ ′′i (x)− 2m
h̄2

(
Vi(x)− E

)
ξi(x) = 0

or

− h̄2

2m
ξ ′′i (x) +

(
Vi(x)− E

)
ξi(x) = 0

for all 0 < x < c (when i = 1) and x > c (when i = 2).

To calculate the upper bound of inequality (6) in Theorem 1, we first have to solve
differential equations of (10) to find y1(x) and y2(x). On account of [15], we can find the
general solutions of the differential equations of (10). We select the appropriate y1(x) and
y2(x) according to the formulas given in Remark 1 and estimate the upper bound of the
inequality (6).

Remark 1. (i) The general solution of the first equation in (10) is given by

y1(x) = c1Ai

(
3

√
2m

c2k2h̄2

(
kx− 2ck− c2E

))
+ c2Bi

(
3

√
2m

c2k2h̄2

(
kx− 2ck− c2E

))
,

where c1 and c2 are arbitrary complex numbers, Ai(x) is the Airy function and Bi(x) is the Airy
Bi function. That is, Ai(x) and Bi(x) are linearly independent solutions of the Airy equation,
y′′(x)− xy(x) = 0. More precisely,
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Ai(x) = a1

∞

∑
n=0

3n
(

1
3

)
n

x3n

(3n)!
− a2

∞

∑
n=0

3n
(

2
3

)
n

x3n+1

(3n + 1)!
,

Bi(x) = b1

∞

∑
n=0

3n
(

1
3

)
n

x3n

(3n)!
+ b2

∞

∑
n=0

3n
(

2
3

)
n

x3n+1

(3n + 1)!
,

where a1, a2, b1, and b2 are arbitrary complex constants and where we set (a)0 = 1 and
(a)n = a(a + 1)(a + 2) · · · (a + n− 1).

(ii) The general solution of the second equation in (10) is given by

y2(x) = c1x exp

(
−

√
−2mE

h̄2 x

)
U

(
k

2E

√
−2mE

h̄2 + 1, 2, 2

√
−2mE

h̄2 x

)

+ c2x exp

(
−

√
−2mE

h̄2 x

)
1F1

(
k

2E

√
−2mE

h̄2 + 1; 2; 2

√
−2mE

h̄2 x

)
,

where U(a, b, x) is the confluent hypergeometric function of the second kind and 1F1(a; b; x) is the
Kummer confluent hypergeometric function. More precisely,

1F1(a; b; x) =
∞

∑
n=0

(a)nxn

(b)nn!
,

U(a, b, x) =
π

sin(bπ)

(
1F1(a; b; x)

Γ(1 + a− b)Γ(b)
− x1−b 1F1(1 + a− b; 2− b; x)

Γ(a)Γ(2− b)

)
.

3. Examples

As examples related to the subject of this paper, we consider the case of the hydrogen
atom in this section.

As we know, h̄ ≈ 1.055× 10−34 Js is reduced Planck constant, k = e2

4πε0
≈ 2.307×

10−28 Nm2, me ≈ 9.109× 10−31 kg is the mass of electron, E = −mek2

2h̄2 ≈ −13.61 eV ≈
−2.178× 10−18 J is the electron energy at its ground state. Then, −2meE

h̄2 ≈ 3.565× 1020/m2

and
√
−2meE

h̄2 ≈ 1.888× 1010/m.

If we set x = x̃a0, where x̃ is in units of Bohr radius and a0 = h̄2

mek ≈ 0.5296× 10−10 m is

the Bohr radius, then
√
−2meE

h̄2 a0 = 1,
√
−2meE

h̄2 x =
√
−2meE

h̄2 a0 x̃ = x̃, and k
2E

√
−2meE

h̄2 = −1.

(a) For example, if we choose c ≈ 2.648 × 10−11 m so that c 3
√

2mek
c2 h̄2 = 1, i.e.,

c = h̄2

2mek = a0
2 , then 3

√
2mek
c2 h̄2 ≈ 3.776× 1010, 1

k
3
√

2mek
c2 h̄2 (−c2E) = 0.25, 1

k
3
√

2mek
c2 h̄2 (−2ck) = −2,

and 1
k

3
√

2mek
c2 h̄2 kx = 3

√
2mek
c2 h̄2 a0 x̃ = 2x̃. Therefore, putting c1 = 1 and c2 = 0 in Remark 1

(i) yields

y1(x) = Ai

(
1
k

3

√
2mek
c2h̄2

(
− c2E− 2ck + kx

))
= Ai(−1.75 + 2x̃).

As we see in Figure 2, y1(x) is positive and has no zeros on (0, c), and hence, the upper
bound for inequality (6) exists.
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Figure 2. y1(x) has no zeros on (0, c).

Moreover, we have

F1(x) :=
∫ x

0

∫ t

0

y1(s)
y1(t)

dsdt =
∫ x

0

1
y1(t)

(∫ t

0
y1(s)ds

)
dt

=
∫ x

0

1
y1(t)

(
a0

∫ t̃

0
Ai(−1.75 + 2s̃)ds̃

)
dt

=
∫ x

0

a0

Ai(−1.75 + 2t̃)

∫ t̃

0
Ai(−1.75 + 2s̃)ds̃dt

= a2
0

∫ x̃

0

1
Ai(−1.75 + 2t̃)

∫ t̃

0
Ai(−1.75 + 2s̃)ds̃dt̃

for all 0 < x < c = a0
2 , where t̃ = t

a0
and x̃ = x

a0
. We know that 2meε

h̄2 F1(x) is an upper
bound for inequality (6) when 0 < x < c.

Using Wolfram Alpha to compute the above double integral for small values of x, we
get Table 1:

Table 1. In this table, a0 denotes the Bohr radius of hydrogen atom.

x 0.1a0 0.2a0 0.3a0 0.4a0 0.5a0

F1(x) 0.0047a2
0 0.018a2

0 0.040a2
0 0.071a2

0 0.113a2
0

(b) If we put c1 = 1
a0

and c2 = 0 in Remark 1 (ii), then we have

y2(x) =
1
a0

x exp

(
−

√
−2meE

h̄2 x

)
U

(
k

2E

√
−2meE

h̄2 + 1, 2, 2

√
−2meE

h̄2 x

)
= x̃e−x̃U(0, 2, 2x̃) = x̃e−x̃

for x > c = a0
2 , where x̃ = x

a0
and a0 is the Bohr radius. As we see in Figure 3, y2(x) has no

zeros on (c, ∞), and thus, the upper bound for inequality (6) exists.

Figure 3. y2(x) has no zeros on (c, ∞).
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Furthermore, we see that

F2(x) :=
∫ x

0

∫ t

0

y2(s)
y2(t)

dsdt =
∫ x

0

1
y2(t)

(∫ t

0
y2(s)ds

)
dt

=
∫ x

0

1
y2(t)

(
a0

∫ t̃

0
s̃e−s̃ds̃

)
dt =

∫ x

0

a0

t̃e−t̃

∫ t̃

0
s̃e−s̃ds̃dt

= a2
0

∫ x̃

0

1
t̃e−t̃

∫ t̃

0
s̃e−s̃ds̃dt̃

for any x > c = a0
2 , where t̃ = t

a0
and x̃ = x

a0
. We know that 2meε

h̄2 F2(x) is an upper bound
for inequality (6) when x > c.

Using Wolfram Alpha to compute the above double integral for some values of x, we
get Table 2:

Table 2. In this table, a0 denotes the Bohr radius of hydrogen atom.

x a0 2a0 3a0 4a0 5a0 6a0 7a0 8a0 9a0

F2(x) 0.32a2
0 1.68a2

0 5.26a2
0 13.67a2

0 32.99a2
0 77.62a2

0 181.98a2
0 429.72a2

0 1026.1a2
0

Unfortunately, F2(x) is a very fast increasing function.

4. Discussion

When it is difficult to find an exact solution of the Schrödinger equation for a particular
potential, we can apply the perturbation theory to that equation. Moreover, we know that
the one-dimensional Schrödinger equation can be applied to analyze the state of a particle
reflected by a rectangular potential, which was the subject of a previous paper [16].

Since the difference between the perturbed solution ψi and the exact solution ξi of the
one-dimensional time-independent Schrödinger Equation (3) is strongly influenced by x,
we did not prove in Theorem 1 the exact Hyers–Ulam stability of the Schrödinger equation
when the most of potential curve is hyperbolic. Therefore, it can be said that in this paper
we dealt with a type of Hyers–Ulam stability.

The inequality (6) will be satisfied whatever y1(x) and y2(x) we choose which satisfy
the formulas in Remark 1, but the upper bound of inequality (6) may depend strongly upon
the choices of y1(x) and y2(x). Of course, the smaller the upper bound of the inequality, the
better it is. But unfortunately we do not know what choices of y1(x) and y2(x) should be
in order to reduce the upper bound of the inequality. We think that this question is worthy
of another study separately from this paper.

5. Conclusions

In this paper, we investigated a type of Hyers–Ulam stability of the one-dimensional
time-independent Schrödinger equation by using the operator method when the potential
function is nearly expressed by a hyperbolic curve.

This problem is of great significance as it is suitable for describing the state of an
electron of a hydrogen atom in nature. The electron may first be unstable in its transient
state but it quickly reaches its stable state via the stability of the relevant Schrödinger
equation. In other words, the stability of the Schrödinger equation with the relevant
potential guarantees that the perturbed orbit will quickly come back to its corresponding
stable orbit.

To the best of our knowledge, no papers have yet addressed this kind of stability
problem. Therefore, it can be said that the value of this paper is high.
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