Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor

Full metadata record
DC Field Value Language
dc.contributor.authorJeon, C.-W.-
dc.contributor.authorKim, H.-J.-
dc.contributor.authorYun, C.-
dc.contributor.authorHan, X.-
dc.contributor.authorKim, Jung Hun-
dc.date.accessioned2021-09-02T03:42:18Z-
dc.date.available2021-09-02T03:42:18Z-
dc.date.created2021-08-18-
dc.date.issued2021-08-
dc.identifier.issn1537-5110-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/15887-
dc.description.abstractSuccessful use of an auto-guided agricultural machine in paddy fields depends on the ability to generate a full-coverage path consisting of inner and outer-work paths adapted to various field shapes in the presence of an enclosing field boundary. To enhance the performance of a coverage path planner (CPP) developed in our previous study, this article describes the development of a complete CPP for a fully autonomous tillage tractor that provides automatic generation of both inner and outer-work paths, and boundary corner turning methods applicable to polygonal-shaped paddy fields with various corner angles. Computer simulation of the developed turning manoeuvres was conducted using a 3D tractor-driving simulator by analysing the trajectories of a virtual tractor on ground under varying corner angle conditions. A field evaluation was performed with a 60-kW auto-guided tillage tractor equipped with the developed CPP in three different shapes of paddy fields. The results of the computer simulation confirmed that the designed boundary corner turning methods could provide an acceptable level of tracking performance with lateral deviations <70 mm when following boundary corner turning paths. In the field tests, the autonomous tillage tractor successfully followed the whole paths with lateral and heading root-mean-squared errors ranging from 32 to 101 mm and 0.6°–2.2°, respectively, and demonstrated superior tillage performance by reducing the skipped areas of 1.7% (triangle), 0.9% (quadrilateral), and 1.0% (pentagon) of the total area as compared with that of 8.5% obtained with the previously developed system. © 2021 IAgrE-
dc.language영어-
dc.language.isoen-
dc.publisherAcademic Press-
dc.subjectAgricultural robots-
dc.subjectAgriculture-
dc.subjectAutonomous vehicles-
dc.subjectMean square error-
dc.subjectTractors (truck)-
dc.subjectTurning-
dc.subjectAgricultural machine-
dc.subjectAutomatic Generation-
dc.subjectField evaluation-
dc.subjectLateral deviation-
dc.subjectRoot mean squared errors-
dc.subjectTracking performance-
dc.subjectTractor-driving simulator-
dc.subjectValidation testing-
dc.subjectTractors (agricultural)-
dc.titleDesign and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jung Hun-
dc.identifier.doi10.1016/j.biosystemseng.2021.05.008-
dc.identifier.scopusid2-s2.0-85107306901-
dc.identifier.wosid000671437900006-
dc.identifier.bibliographicCitationBiosystems Engineering, v.208, pp.79 - 97-
dc.relation.isPartOfBiosystems Engineering-
dc.citation.titleBiosystems Engineering-
dc.citation.volume208-
dc.citation.startPage79-
dc.citation.endPage97-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryAgriculture, Multidisciplinary-
dc.subject.keywordPlusAgricultural robots-
dc.subject.keywordPlusAgriculture-
dc.subject.keywordPlusAutonomous vehicles-
dc.subject.keywordPlusMean square error-
dc.subject.keywordPlusTractors (truck)-
dc.subject.keywordPlusTurning-
dc.subject.keywordPlusAgricultural machine-
dc.subject.keywordPlusAutomatic Generation-
dc.subject.keywordPlusField evaluation-
dc.subject.keywordPlusLateral deviation-
dc.subject.keywordPlusRoot mean squared errors-
dc.subject.keywordPlusTracking performance-
dc.subject.keywordPlusTractor-driving simulator-
dc.subject.keywordPlusValidation testing-
dc.subject.keywordPlusTractors (agricultural)-
dc.subject.keywordAuthorAutonomous tillage tractor-
dc.subject.keywordAuthorBoundary corner turning-
dc.subject.keywordAuthorCoverage path planner (CPP)-
dc.subject.keywordAuthorPaddy field-
dc.subject.keywordAuthorSkipped area-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Hun photo

Kim, Jung Hun
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE