Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Universal electron transporting layers via mixing two homostructure molecules with different polarities for organic light-emitting diodes

Full metadata record
DC Field Value Language
dc.contributor.authorKim, K.J.-
dc.contributor.authorLee, H.-
dc.contributor.authorHwang, K.M.-
dc.contributor.authorPark, B.-
dc.contributor.authorOh, H.Y.-
dc.contributor.authorKim, Y.K.-
dc.contributor.authorKim, Taekyung-
dc.date.accessioned2021-09-02T03:42:21Z-
dc.date.available2021-09-02T03:42:21Z-
dc.date.created2021-08-18-
dc.date.issued2021-09-
dc.identifier.issn1566-1199-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/15890-
dc.description.abstractIn general, electron transport layer (ETL) in organic light-emtting diodes (OLEDs) consists of single component of electron transporting material (ETM) or a mixture with n-dopant such as 8-hydroxyquinolinolato-lithium (Liq). However, there exists a limit to controlling a wide range of carrier density in OLEDs according to the required characteristics of the devices due to electrically insulating property of Liq. Here, we suggest a universal strategy to construct an efficient ETL. We synthesized two ETMs, diphenyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-amine (An-Ph) and phneyl-[4-(10-phenyl-anthracene-9-yl)-phenyl]-pyridin-3-yl-amine (An-Py) that have the same core structures with different polarities in functional groups. The electrical characteristics of electron-only-devices (EODs) were investigated by space charge limited current (SCLC) modeling and impedance spectroscopy analysis. Interestingly, the homostructure type ETL composed of An-Ph and An-Py showed not only superior electron transporting capability, but also the possibility of controlling electron injection and transporting in a wide range compared to the heterostructure type ETL of An-Ph and Liq. Compared to the An-Ph-only EOD, the electron mobility in 75% An-Py-mixed homostructure EOD increased by almost 4 orders of magnitude. Such dramatic variation of electron mobility was achieved thanks to the molecular design strategy to separate charge injection and charge transport regions within a molecule, which consequently induced the giant surface potential (GSP) effect between the ETL/cathode interface. As a result, the external quantum efficiency (EQE) of blue fluorescent and phosphorescent OLEDs with the homostructure ETLs was enhanced by 28.6% and 34%, respectively, compared to that of each control device without manipulating outcoupling effects. © 2021 Elsevier B.V.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleUniversal electron transporting layers via mixing two homostructure molecules with different polarities for organic light-emitting diodes-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Taekyung-
dc.identifier.doi10.1016/j.orgel.2021.106220-
dc.identifier.scopusid2-s2.0-85107439572-
dc.identifier.wosid000672576500005-
dc.identifier.bibliographicCitationOrganic Electronics, v.96-
dc.relation.isPartOfOrganic Electronics-
dc.citation.titleOrganic Electronics-
dc.citation.volume96-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusCARRIER MOBILITY-
dc.subject.keywordPlusIMPEDANCE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusOLEDS-
dc.subject.keywordAuthorElectron transporting layer-
dc.subject.keywordAuthorGiant surface potential-
dc.subject.keywordAuthorOLED-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Taekyung photo

Kim, Taekyung
Science & Technology (Department of Nanomaterials Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE