Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrasonic assisted exfoliation for efficient production of RuO2 monolayer nanosheets

Authors
Kim, Se YunKim, Sang-ilKim, Mun KyoungKim, JinhongMizusaki, SoichiroKo, Dong-SuJung, ChanghoonYun, Dong-JinRoh, Jong WookKim, Hyun-SikSohn, HiesangLim, Jong-HyeongOh, Jong-MinJeong, Hyung MoShin, Weon Ho
Issue Date
12-Oct-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
INORGANIC CHEMISTRY FRONTIERS, v.8, no.20, pp.4482 - 4487
Journal Title
INORGANIC CHEMISTRY FRONTIERS
Volume
8
Number
20
Start Page
4482
End Page
4487
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16341
DOI
10.1039/d1qi00652e
ISSN
2052-1553
Abstract
Two-dimensional (2D) metal oxide nanosheets have been synthesized through ion exchange reactions. However, they require a long time and lead to low production yields due to the molecular size of the intercalant and reaction activation energies. To reduce the processing time and accelerate the production yield, we introduce an ultrasonically supported ion exchange reaction process. We applied ultrasound energy on the solution of RuO2 nanosheets and the intercalant after 3 days of stirring the ion exchange reaction. After 15 min, the yield of RuO2 nanosheets increased by over 50%. In addition, we observed that the lateral size of the RuO2 nanosheets decreased with the applied ultrasonic time. Density functional theory calculations demonstrated that the activation energy of exfoliation is significantly reduced by splitting the RuO2 layers into a small lateral size. This result shows that ultrasound provides energy for 15 min of exfoliation of the RuO2 nanosheets, after which the energy is used to break the RuO2 nanosheets. The experimental and theoretical results suggest that an ultrasonic-supported ion exchange process offers a facile and efficient approach for fabricating 2D metal oxide nanosheets.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE