Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thermodynamic modeling of the CeO2-CoO nano-phase diagram

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Sung Sik-
dc.date.accessioned2021-11-11T02:44:58Z-
dc.date.available2021-11-11T02:44:58Z-
dc.date.created2021-10-25-
dc.date.issued2014-03-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16732-
dc.description.abstractA nano-phase diagram of the CeO2-CoO system was modeled thermodynamically with experimental data available in the literatures. The surface energies of CeO2 and CoO unavailable in the literatures were estimated reasonably on the thermodynamic basis. Butler's model was used to describe the surface energy and the surface composition of the solution phases and then the nano interaction parameters on the particle radius were assessed through the multiple linear regression method. A consistent set of optimized interaction parameters in the present system was derived for describing the Gibbs energy of liquid, fluorite, and halite solution phases as a function of particle radius. The eutectic temperatures calculated in the present work interpreted well the experimental data for the unusual low sintering temperature of the nanoparticles with the tri-modal particle size distribution. Furthermore, with the aid of the present result, the microstructure evolution in the CGO-CoO system during the nanoparticle sintering was described reasonably. It is concluded that the present modeling will be a good guide for the condition of the liquid phase sintering to obtain the rapid densification of the nanoparticles at lower temperatures. (C) 2013 Elsevier B. V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectGRAIN-BOUNDARY ENERGIES-
dc.subjectMOLTEN-SALT MIXTURES-
dc.subjectSURFACE-TENSION-
dc.subjectMELTING TEMPERATURE-
dc.subjectINTERFACIAL ENERGIES-
dc.subjectSIZE-
dc.subjectDEPENDENCE-
dc.subjectOXIDE-
dc.subjectCONDUCTIVITY-
dc.subjectNANOPARTICLE-
dc.titleThermodynamic modeling of the CeO2-CoO nano-phase diagram-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sung Sik-
dc.identifier.doi10.1016/j.jallcom.2013.10.239-
dc.identifier.scopusid2-s2.0-84890504571-
dc.identifier.wosid000330179200116-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.588, pp.697 - 704-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume588-
dc.citation.startPage697-
dc.citation.endPage704-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusGRAIN-BOUNDARY ENERGIES-
dc.subject.keywordPlusMOLTEN-SALT MIXTURES-
dc.subject.keywordPlusSURFACE-TENSION-
dc.subject.keywordPlusMELTING TEMPERATURE-
dc.subject.keywordPlusINTERFACIAL ENERGIES-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusNANOPARTICLE-
dc.subject.keywordAuthorNanoparticles-
dc.subject.keywordAuthorPhase diagram-
dc.subject.keywordAuthorThermodynamic modeling-
dc.subject.keywordAuthorSurface energy-
dc.subject.keywordAuthorCeO2-CoO-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Major in Ceramic Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE