Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thermoelectric Characteristics of p-Type (Bi,Sb)(2)Te-3/(Pb,Sn)Te Functional Gradient Materials with Variation of the Segment Ratio

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Tae-Sung-
dc.date.accessioned2022-01-03T05:42:55Z-
dc.date.available2022-01-03T05:42:55Z-
dc.date.created2021-12-28-
dc.date.issued2009-07-
dc.identifier.issn0361-5235-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/21833-
dc.description.abstractThe p-type (Bi,Sb)(2)Te-3/(Pb,Sn)Te functional gradient materials (FGMs) were fabricated by hot-pressing mechanically alloyed (Bi0.2Sb0.8)(2)Te-3 and 0.5 at.% Na2Te-doped (Pb0.7Sn0.3)Te powders together at 500A degrees C for 1 h in vacuum. Segment ratios of (Bi,Sb)(2)Te-3 to (Pb,Sn)Te were varied as 3:1, 1.3:1, and 1:1.6. A reaction layer of about 350-mu m thickness was formed at the (Bi,Sb)(2)Te-3/(Pb,Sn)Te FGM interface. Under temperature differences larger than 340A degrees C applied across a specimen, superior figures of merit were predicted for the (Bi,Sb)(2)Te-3/(Pb,Sn)Te FGMs to those of (Bi0.2Sb0.8)(2)Te-3 and (Pb0.7Sn0.3)Te. With a temperature difference of 320A degrees C applied across a specimen, the (Bi,Sb)(2)Te-3/(Pb,Sn)Te FGMs with segment ratios of 3:1 and 1.3:1 exhibited the maximum output powers of 72.1 mW and 72.6 mW, respectively, larger than the 63.9 mW of (Bi0.2Sb0.8)(2)Te-3 and the 26 mW of 0.5 at.% Na2Te-doped (Pb0.7Sn0.3)Te.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subjectPERFORMANCE-
dc.titleThermoelectric Characteristics of p-Type (Bi,Sb)(2)Te-3/(Pb,Sn)Te Functional Gradient Materials with Variation of the Segment Ratio-
dc.typeArticle-
dc.contributor.affiliatedAuthorOh, Tae-Sung-
dc.identifier.doi10.1007/s11664-009-0707-5-
dc.identifier.scopusid2-s2.0-67650497000-
dc.identifier.wosid000267662500026-
dc.identifier.bibliographicCitationJOURNAL OF ELECTRONIC MATERIALS, v.38, no.7, pp.1041 - 1047-
dc.relation.isPartOfJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.titleJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.volume38-
dc.citation.number7-
dc.citation.startPage1041-
dc.citation.endPage1047-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorThermoelectric materials-
dc.subject.keywordAuthorfunctional gradient materials-
dc.subject.keywordAuthorbismuth telluride-
dc.subject.keywordAuthorlead telluride-
dc.subject.keywordAuthorfigure of merit-
dc.subject.keywordAuthoroutput power-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Materials Science and Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE