Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Zinc and Tin-Zinc Via-Filling for the Formation of Through-Silicon Vias in a System-in-Package

Full metadata record
DC Field Value Language
dc.contributor.authorJee, Y. K.-
dc.contributor.authorYu, J.-
dc.contributor.authorPark, K. W.-
dc.contributor.authorOh, T. S.-
dc.date.accessioned2022-01-03T05:43:22Z-
dc.date.available2022-01-03T05:43:22Z-
dc.date.created2021-12-28-
dc.date.issued2009-05-
dc.identifier.issn0361-5235-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/21865-
dc.description.abstractMicrovias of 50 mu m diameter in a Si chip were filled with Zn or Sn-Zn to form through-silicon vias by means of an electroplating/reflow process or a dipping method. In the case of the electroplating/reflow process, Zn was electroplated on a Cu seed layer in via holes, and a reflow was then performed to fill the via holes with the electroplated Zn. In the case of the dipping method, Zn via-filling and Sn-Zn via-filling were performed by dipping a via hole specimen into a molten bath of Zn or Sn-Zn. A filling pressure greater than 3 MPa during the via-filling is essential for ensuring that the via holes are completely filled with Zn or Sn-Zn and for preventing voids from being trapped in the vias. The melting temperature and electrical conductivity of the Sn-Zn alloys increases almost linearly with the content of Zn, implying that the thermal and electrical properties of the Sn-Zn vias can be easily controlled by varying the composition of the Sn-Zn vias. A chip-stack specimen was fabricated by flip-chip bonding of three chips with Zn vias.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGER-
dc.titleZinc and Tin-Zinc Via-Filling for the Formation of Through-Silicon Vias in a System-in-Package-
dc.typeArticle-
dc.contributor.affiliatedAuthorOh, T. S.-
dc.identifier.doi10.1007/s11664-008-0646-6-
dc.identifier.scopusid2-s2.0-62549132454-
dc.identifier.wosid000264176300009-
dc.identifier.bibliographicCitationJOURNAL OF ELECTRONIC MATERIALS, v.38, no.5, pp.685 - 690-
dc.relation.isPartOfJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.titleJOURNAL OF ELECTRONIC MATERIALS-
dc.citation.volume38-
dc.citation.number5-
dc.citation.startPage685-
dc.citation.endPage690-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthorChip-stack package-
dc.subject.keywordAuthorsystem-in-package-
dc.subject.keywordAuthorthrough-silicon via-
dc.subject.keywordAuthorZn via-
dc.subject.keywordAuthorSn-Zn via-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Materials Science and Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE